29,479 research outputs found

    Disks in Expanding FRW Universes

    Get PDF
    We construct exact solutions to Einstein equations which represent relativistic disks immersed into an expanding FRW Universe. It is shown that the expansion influences dynamical characteristics of the disks such as rotational curves, surface mass density, etc. The effects of the expansion is exemplified with non-static generalizations of Kuzmin-Curzon and generalized Schwarzschild disks.Comment: Revised version to appear in ApJ, Latex, 17 pages, 10 figures, uses aaspp4 and epsf style file

    Addressing student models of energy loss in quantum tunnelling

    Full text link
    We report on a multi-year, multi-institution study to investigate student reasoning about energy in the context of quantum tunnelling. We use ungraded surveys, graded examination questions, individual clinical interviews, and multiple-choice exams to build a picture of the types of responses that students typically give. We find that two descriptions of tunnelling through a square barrier are particularly common. Students often state that tunnelling particles lose energy while tunnelling. When sketching wave functions, students also show a shift in the axis of oscillation, as if the height of the axis of oscillation indicated the energy of the particle. We find inconsistencies between students' conceptual, mathematical, and graphical models of quantum tunnelling. As part of a curriculum in quantum physics, we have developed instructional materials to help students develop a more robust and less inconsistent picture of tunnelling, and present data suggesting that we have succeeded in doing so.Comment: Originally submitted to the European Journal of Physics on 2005 Feb 10. Pages: 14. References: 11. Figures: 9. Tables: 1. Resubmitted May 18 with revisions that include an appendix with the curriculum materials discussed in the paper (4 page small group UW-style tutorial

    Gravitational Radiation from Cylindrical Naked Singularity

    Full text link
    We construct an approximate solution which describes the gravitational emission from a naked singularity formed by the gravitational collapse of a cylindrical thick shell composed of dust. The assumed situation is that the collapsing speed of the dust is very large. In this situation, the metric variables are obtained approximately by a kind of linear perturbation analysis in the background Morgan solution which describes the motion of cylindrical null dust. The most important problem in this study is what boundary conditions for metric and matter variables should be imposed at the naked singularity. We find a boundary condition that all the metric and matter variables are everywhere finite at least up to the first order approximation. This implies that the spacetime singularity formed by this high-speed dust collapse is very similar to that formed by the null dust and thus the gravitational emission from a naked singularity formed by the cylindrical dust collapse can be gentle.Comment: 20 pages, 1 figur

    Program on Earth Observation Data Management Systems (EODMS), appendixes

    Get PDF
    The needs of state, regional, and local agencies involved in natural resources management in Illinois, Iowa, Minnesota, Missouri, and Wisconsin are investigated to determine the design of satellite remotely sensed derivable information products. It is concluded that an operational Earth Observation Data Management System (EODMS) will be most beneficial if it provides a full range of services - from raw data acquisition to interpretation and dissemination of final information products. Included is a cost and performance analysis of alternative processing centers, and an assessment of the impacts of policy, regulation, and government structure on implementing large scale use of remote sensing technology in this community of users

    Naked singularity resolution in cylindrical collapse

    Full text link
    In this paper, we study the gravitational collapse of null dust in the cylindrically symmetric spacetime. The naked singularity necessarily forms at the symmetry axis. We consider the situation in which null dust is emitted again from the naked singularity formed by the collapsed null dust and investigate the back-reaction by this emission for the naked singularity. We show a very peculiar but physically important case in which the same amount of null dust as that of the collapsed one is emitted from the naked singularity as soon as the ingoing null dust hits the symmetry axis and forms the naked singularity. In this case, although this naked singularity satisfies the strong curvature condition by Kr\'{o}lak (limiting focusing condition), geodesics which hit the singularity can be extended uniquely across the singularity. Therefore we may say that the collapsing null dust passes through the singularity formed by itself and then leaves for infinity. Finally the singularity completely disappears and the flat spacetime remains.Comment: 17 pages, no figur
    • …
    corecore