67 research outputs found

    Including Pathogen Risk in Life Cycle Assessment of Wastewater Management. 1. Estimating the Burden of Disease Associated with Pathogens

    Get PDF
    The environmental performance of wastewater and sewage sludge management is commonly assessed using life cycle assessment (LCA), whereas pathogen risk is evaluated with quantitative microbial risk assessment (QMRA). This study explored the application of QMRA methodology with intent to include pathogen risk in LCA and facilitate a comparison with other potential impacts on human health considered in LCA. Pathogen risk was estimated for a model wastewater treatment system (WWTS) located in an industrialized country and consisting of primary, secondary, and tertiary wastewater treatment, anaerobic sludge digestion, and land application of sewage sludge. The estimation was based on eight previous QMRA studies as well as parameter values taken from the literature. A total pathogen risk (expressed as burden of disease) on the order of 0.2–9 disability-adjusted life years (DALY) per year of operation was estimated for the model WWTS serving 28 600 persons and for the pathogens and exposure pathways included in this study. The comparison of pathogen risk with other potential impacts on human health considered in LCA is detailed in part 2 of this article series

    Sensitivity of Nitrogen K-Edge X-ray Absorption to Halide Substitution and Thermal Fluctuations in Methylammonium Lead-Halide Perovskites

    No full text
    The performance of hybrid perovskite materials in solar cells crucially depends on their electronic properties, and it is important to investigate contributions to the total electronic structure from specific components in the material. In a combined theoretical and experimental study of CH3NH3PbI3—methylammonium lead triiodide (MAPI)—and its bromide cousin CH3NH3PbBr3 (MAPB), we analyze nitrogen K-edge (N 1s-to-2p*) X-ray absorption (XA) spectra measured in MAPI and MAPB single crystals. This permits comparison of spectral features to the local character of unoccupied molecular orbitals on the CH3NH3+ (MA+) counterions and allows us to investigate how thermal fluctuations, hydrogen bonding, and halide-ion substitution influence the XA spectra as a measure of the local electronic structure. In agreement with the experiment, the simulated spectra for MAPI and MAPB show close similarity, except that the MAPB spectral features are blue-shifted by +0.31 eV. The shift is shown to arise from the intrinsic difference in the electronic structure of the two halide atoms rather than from structural differences between the materials. In addition, from the spectral sampling analysis of molecular dynamics simulations, clear correlations between geometric descriptors (N–C, N–H, and H···I/Br distances) and spectral features are identified and used to explain the spectral shapes
    corecore