2,180 research outputs found

    Development of Large area Gamma-ray Camera with GSO(Ce) Scintillator Arrays and PSPMTs

    Get PDF
    We have developed a position-sensitive scintillation camera with a large area absorber for use as an advanced Compton gamma-ray camera. At first we tested GSO(Ce) crystals. We compared light output from the GSO(Ce) crystals under various conditions: the method of surface polishing, the concentration of Ce, and co-doping Zr. As a result, we chose the GSO(Ce) crystals doped with only 0.5 mol% Ce, and its surface polished by chemical etching as the scintillator of our camera. We also made a 16×\times16 cm2^2 scintillation camera which consisted of 9 position-sensitive PMTs (PSPMTs Hamamatsu flat-panel H8500), the each of which had 8×\times8 anodes with a pitch of 6 mm and coupled to 8×\times8 arrays of pixelated 6×6×\times6\times13 mm3^3 GSO(Ce) scintillators. For the readout system of the 576 anodes of the PMTs, we used chained resistors to reduce the number of readout channels down to 48 to reduce power consumption. The camera has a position resolution of less than 6mm and a typical energy resolution of 10.5% (FWHM) at 662 keV at each pixel in a large area of 16×\times16 cm2^2. %to choose the best scintillator for our project. Furthermore we constructed a 16×\times16 array of 3×3×\times3\times13 mm3^3 pixelated GSO(Ce) scintillators, and glued it to a PMT H8500. This camera had the position resolution of less than 3mm, over an area of 5×\times5 cm2^2, except for some of the edge pixels; the energy resolution was typically 13% (FWHM) at 662 keV.Comment: Proceedings of PSD7 appear in NIM

    Studies of the performance of different front-end systems for flat-panel multi-anode PMTs with CsI(Tl) scintillator arrays

    Full text link
    We have studied the performance of two different types of front-end systems for our gamma camera based on Hamamatsu H8500 (flat-panel 64 channels multi-anode PSPMT) with a CsI(Tl) scintillator array. The array consists of 64 pixels of 6×6×20mm36\times6\times20{\rm mm}^3 which corresponds to the anode pixels of H8500. One of the system is based on commercial ASIC chips in order to readout every anode. The others are based on resistive charge divider network between anodes to reduce readout channels. In both systems, each pixel (6mm) was clearly resolved by flood field irradiation of 137^{137}Cs. We also investigated the energy resolution of these systems and showed the performance of the cascade connection of resistive network between some PMTs for large area detectors.Comment: 9 pages, 6 figures, proceedings of the 7th International Workshop on Radiation Imaging Detectors (IWORID7), submitted to NIM

    Laboratory study on heterogeneous decomposition of methyl chloroform on various standard aluminosilica clay minerals as a potential tropospheric sink

    Get PDF
    International audienceMethyl chloroform (1,1,1-trichloroethane, CH3CCl3) was found to decompose heterogeneously on seven types of standard clay minerals (23 materials) in dry air at 313 K in the laboratory. All reactions proceeded through the elimination of HCl; CH3CCl3 was converted quantitatively to CH2=CCl2. The activities of the clay minerals were compared via their pseudo-first-order reaction rate constants (k1). A positive correlation was observed between the k1 value and the specific surface area (S) of clay minerals, where the S value was determined by means of the general Brunauer-Emmett-Teller (BET) equation. The k1 value was anti-correlated with the value of n, which was a parameter of the general BET equation and related to the average pore size of the clay minerals, and correlated with the water content that can be removed easily from the clay minerals. The reaction required no special pretreatment of clay minerals, such as heating at high temperatures; hence, the reaction can be expected to occur in the environment. Photoillumination by wavelengths present in the troposphere did not accelerate the decomposition of CH3CCl3, but it induced heterogeneous photodecomposition of CH2=CCl2. The temperature dependence of k1, the adsorption equilibrium coefficient of CH3CCl3 and CH2=CCl2, and the surface reaction rate constant of CH3CCl3 were determined for an illite sample. The k1 value increased with increasing temperature. The amount of CH3CCl3 adsorbed on the illite during the reaction was proportional to the partial pressure of CH3CCl3. The reaction was sensitive to relative humidity and the k1 value decreased with increasing relative humidity. However, the reaction was found to proceed at a relative humidity of 22% at 313 K, although the k1 value was about one-twentieth of the value in non-humidified air. The conditions required for the reaction may be present in major desert regions of the world. A simple estimation indicates that the possible heterogeneous decomposition of CH3CCl3 on the ground surface in arid regions is worth taking into consideration when inferring the tropospheric lifetime of CH3CCl3 and global OH concentration from the global budget concentration of CH3CCl3

    Development of an advanced Compton camera with gaseous TPC and scintillator

    Full text link
    A prototype of the MeV gamma-ray imaging camera based on the full reconstruction of the Compton process has been developed. This camera consists of a micro-TPC that is a gaseous Time Projection Chamber (TPC) and scintillation cameras. With the information of the recoil electrons and the scattered gamma-rays, this camera detects the energy and incident direction of each incident gamma-ray. We developed a prototype of the MeV gamma-ray camera with a micro-TPC and a NaI(Tl) scintillator, and succeeded in reconstructing the gamma-rays from 0.3 MeV to 1.3 MeV. Measured angular resolutions of ARM (Angular Resolution Measure) and SPD (Scatter Plane Deviation) for 356 keV gamma-rays were 18∘18^\circ and 35∘35^\circ, respectively.Comment: 4 pages, 5 figures. Proceedings of the 6th International Workshop On Radiation Imaging Detector

    Measurement of scintillation from proportional electron multiplication in liquid xenon using a needle

    Get PDF
    Charge amplification in liquids could provide single-phase xenon time projection chambers with background discrimination and fiducialisation capabilities similar to those found in dual-phase detectors. Although efforts to achieve the high electric field required for charge amplification and proportional scintillation in liquid xenon have been previously reported, their application to large-scale detectors remains elusive. This work presents a new approach to this challenge, where — instead of the thin-wire approach of previous studies — a needle-like high-voltage electrode is employed to demonstrate proportional charge amplification and secondary scintillation production in liquid xenon. This is an important milestone towards the development of an electrode structure that could be utilised in a large-scale, single-phase time projection chamber with dual read-out

    Analysis of Class-DE PA Using MOSFET Devices With Non-Equally Grading Coefficient

    Get PDF
    • …
    corecore