2,169 research outputs found

    Investigation into the effect of plasma pretreatment on the adhesion of parylene to various substrates

    Get PDF
    A procedure is described for using argon and oxygen plasmas to promote adhesion of parylene coatings upon many difficult-to-bond substrates. Substrates investigated were gold, nickel, kovar, teflon (FEP), kapton, silicon, tantalum, titanium, and tungsten. Without plasma treatment, 180 deg peel tests yield a few g/cm (oz/in) strengths. With dc plasma treatment in the deposition chamber, followed by coating, peel strengths are increased by one to two orders of magnitude

    Thermal photon production in high-energy nuclear collisions

    Full text link
    We use a boost-invariant one-dimensional (cylindrically symmetric) fluid dynamics code to calculate thermal photon production in the central rapidity region of S+Au and Pb+Pb collisions at SPS energy (s=20\sqrt{s}=20 GeV/nucleon). We assume that the hot matter is in thermal equilibrium throughout the expansion, but consider deviations from chemical equilibrium in the high temperature (deconfined) phase. We use equations of state with a first-order phase transition between a massless pion gas and quark gluon plasma, with transition temperatures in the range 150Tc200150 \leq T_c \leq 200 MeV.Comment: revised, now includes a_1 contribution. revtex, 10 pages plus 4 figures (uuencoded postscript

    Pre-equilibrium dileptons look thermal

    Full text link
    The dilepton mass distribution from pre-equilibrium matter in ultrarelativistic nuclear collisions is indistinguishable from a thermally produced distribution.Comment: CERN-TH.6813/93, 3 pages (latex) plus 1 figure (uuencoded postscript file

    Finding and Using Open Educational Resources in k-12

    Get PDF
    Presentation from the Librarian to Librarian Networking Summi

    Numerical Approximation of the Transport Equation: Comparison of Five Positive Definite Algorithms

    Get PDF
    IIASA's Regional Acidification INformation and Simulation (RAINS) model will be used to develop and assess international control strategies to reduce emissions of acidifying pollutants. These strategies will involve the expenditure of large sum of money; it is important, therefore, to assess the effect of uncertainties in the model on its results. An important component of the RAINS model is its atmospheric transport component; this paper reports the results of examining several algorithms for solution of the atmospheric transport equation. It also represents a joint effort between IIASA scientists and those in the Institute of Meteorology and Water Management in Warsaw and Central Institute for Meteorology and Geodynamics in Vienna

    Thermal quark production in ultra-relativistic nuclear collisions

    Full text link
    We calculate thermal production of u, d, s, c and b quarks in ultra-relativistic heavy ion collisions. The following processes are taken into account: thermal gluon decay (g to ibar i), gluon fusion (g g to ibar i), and quark-antiquark annihilation (jbar j to ibar i), where i and j represent quark species. We use the thermal quark masses, mi2(T)mi2+(2g2/9)T2m_i^2(T)\simeq m_i^2 + (2g^2/9)T^2, in all the rates. At small mass (mi(T)<2Tm_i(T)<2T), the production is largely dominated by the thermal gluon decay channel. We obtain numerical and analytic solutions of one-dimensional hydrodynamic expansion of an initially pure glue plasma. Our results show that even in a quite optimistic scenario, all quarks are far from chemical equilibrium throughout the expansion. Thermal production of light quarks (u, d and s) is nearly independent of species. Heavy quark (c and b) production is quite independent of the transition temperature and could serve as a very good probe of the initial temperature. Thermal quark production measurements could also be used to determine the gluon damping rate, or equivalently the magnetic mass.Comment: 14 pages (latex) plus 6 figures (uuencoded postscript files); CERN-TH.7038/9

    Low Surface Brightness Imaging of the Magellanic System: Imprints of Tidal Interactions between the Clouds in the Stellar Periphery

    Full text link
    We present deep optical images of the Large and Small Magellanic Clouds (LMC and SMC) using a low cost telephoto lens with a wide field of view to explore stellar substructure in the outskirts of the stellar disk of the LMC (r < 10 degrees from the center). These data have higher resolution than existing star count maps, and highlight the existence of stellar arcs and multiple spiral arms in the northern periphery, with no comparable counterparts in the South. We compare these data to detailed simulations of the LMC disk outskirts, following interactions with its low mass companion, the SMC. We consider interaction in isolation and with the inclusion of the Milky Way tidal field. The simulations are used to assess the origin of the northern structures, including also the low density stellar arc recently identified in the DES data by Mackey et al. 2015 at ~ 15 degrees. We conclude that repeated close interactions with the SMC are primarily responsible for the asymmetric stellar structures seen in the periphery of the LMC. The orientation and density of these arcs can be used to constrain the LMC's interaction history with and impact parameter of the SMC. More generally, we find that such asymmetric structures should be ubiquitous about pairs of dwarfs and can persist for 1-2 Gyr even after the secondary merges entirely with the primary. As such, the lack of a companion around a Magellanic Irregular does not disprove the hypothesis that their asymmetric structures are driven by dwarf-dwarf interactions.Comment: Submitted to ApJ. Comments are welcome

    Secondary phi meson peak as an indicator of QCD phase transition in ultrarelativistic heavy ion collisions

    Get PDF
    In a previous paper, we have shown that a double phi peak structure appears in the dilepton invariant mass spectrum if a first order QCD phase transition occurs in ultrarelativistic heavy ion collisions. Furthermore, the transition temperature can be determined from the transverse momentum distribution of the low mass phi peak. In this work, we extend the study to the case that a smooth crossover occurs in the quark-gluon plasma to the hadronic matter transition. We find that the double phi peak structure still exists in the dilepton spectrum and thus remains a viable signal for the formation of the quark-gluon plasma in ultrarelativistic heavy ion collisions.Comment: 8 pages, 9 uuencoded postscript figures included, Latex, LBL-3572
    corecore