55 research outputs found

    Model of C-Axis Resistivity of High-\Tc Cuprates

    Full text link
    We propose a simple model which accounts for the major features and systematics of experiments on the cc-axis resistivity, ρc\rho_c, for \lsco, \ybco and \bsco . We argue that the cc-axis resistivity can be separated into contributions from in-plane dephasing and the cc-axis ``barrier'' scattering processes, with the low temperature semiconductor-like behavior of ρc\rho_c arising from the suppression of the in-plane density of states measured by in-plane magnetic Knight shift experiments. We report on predictions for ρc\rho_c in impurity-doped \ybco materials.Comment: 10 pages + figures, also see March Meeting J13.1

    Heterologous Reconstitution of the Intact Geodin Gene Cluster in Aspergillus nidulans through a Simple and Versatile PCR Based Approach

    Get PDF
    Fungal natural products are a rich resource for bioactive molecules. To fully exploit this potential it is necessary to link genes to metabolites. Genetic information for numerous putative biosynthetic pathways has become available in recent years through genome sequencing. However, the lack of solid methodology for genetic manipulation of most species severely hampers pathway characterization. Here we present a simple PCR based approach for heterologous reconstitution of intact gene clusters. Specifically, the putative gene cluster responsible for geodin production from Aspergillus terreus was transferred in a two step procedure to an expression platform in A. nidulans. The individual cluster fragments were generated by PCR and assembled via efficient USER fusion prior to transformation and integration via re-iterative gene targeting. A total of 13 open reading frames contained in 25 kb of DNA were successfully transferred between the two species enabling geodin synthesis in A. nidulans. Subsequently, functions of three genes in the cluster were validated by genetic and chemical analyses. Specifically, ATEG_08451 (gedC) encodes a polyketide synthase, ATEG_08453 (gedR) encodes a transcription factor responsible for activation of the geodin gene cluster and ATEG_08460 (gedL) encodes a halogenase that catalyzes conversion of sulochrin to dihydrogeodin. We expect that our approach for transferring intact biosynthetic pathways to a fungus with a well developed genetic toolbox will be instrumental in characterizing the many exciting pathways for secondary metabolite production that are currently being uncovered by the fungal genome sequencing projects
    corecore