1,944 research outputs found

    Cold r-Process in Neutrino-Driven Winds

    Full text link
    The r-process in a low temperature environment is explored, in which the neutron emission by photodisintegration does not play a role (cold r-process). A semi-analytic neutrino-driven wind model is utilized for this purpose. The temperature in a supersonically expanding outflow can quickly drop to a few 10^8 K, where the (n, gamma)-(gamma, n) equilibrium is never achieved during the heavy r-nuclei synthesis. In addition, the neutron capture competes with the beta-decay owing to the low matter density. Despite such non-standard physical conditions for the cold r-process, a solar-like r-process abundance curve can be reproduced. The cold r-process predicts, however, the low lead production compared to that expected in the traditional r-process conditions, which can be a possible explanation for the low lead abundances found in a couple of r-process-rich Galactic halo stars.Comment: 5 pages, 3 figures, accepted for publication in ApJ

    Neutron-capture elements in the very metal-poor star HD88609: another st ar with excesses of light neutron-capture elements

    Full text link
    We obtained a high resolution, high signal-to-noise UV-blue spectrum of the extremely metal-poor red giant HD88609 to determine the abundances of heavy elements. Nineteen neutron-capture elements are detected in the spectrum. Our analysis revealed that this object has large excesses of light neutron-capture elements while heavy neutron-capture elements are deficient. The abundance pattern shows a continuously decreasing trend, as a function of atomic number, from Sr to Yb, which is quite different from those in stars with excesses of r-process elements. Such an abundance pattern is very similar to that of HD122563 that was studied by our previous work. The results indicate that the abundance pattern found in the two stars could represent the pattern produced by the nucleosynthesis process that provided light neutron-capture elements in the very early Galaxy.Comment: 18 pages, 6 figures, accepted for publication in Ap

    The r-Process in the Proto-Neutron-Star Winds with Anisotropic Neutrino Emission

    Get PDF
    The astrophysical origin of the r-process nuclei is still unknown. Even the most promising scenario, the neutrino-driven winds from a nascent neutron star, encounters severe difficulties in obtaining requisite entropy and short dynamic timescale for the r-process. In this study, the effect of anisotropy in neutrino emission from a proto-neutron star surface is examined with semi-analytic neutrino-driven wind models. The increase of neutrino number density in the wind owing to the anisotropy is modeled schematically by enhancing the effective neutrino luminosity. It is shown that the neutrino heating rate from neutrino-antineutrino pair annihilation into electron-positron pairs can significantly increase owing to the anisotropy and play a dominant role for the heating of wind material. A factor of five increase in the effective neutrino luminosity results in 50% higher entropy and a factor of ten shorter dynamic timescale owing to this enhanced neutrino heating. The nucleosynthesis calculations show that this change is enough for the robust r-process, producing the third abundance peak A = 195 and beyond. Future multi-dimensional studies with accurate neutrino transport will be needed if such anisotropy relevant for the current scenario (more than a factor of a few) is realized during the wind phase (~1-10 s).Comment: 8 pages, 3 figures, accepted for publication in ApJ Letter

    The r-Process in Neutrino-Driven Winds from Nascent, "Compact" Neutron Stars of Core-Collapse Supernovae

    Get PDF
    We present calculations of r-process nucleosynthesis in neutrino-driven winds from the nascent neutron stars of core-collapse supernovae. A full dynamical reaction network for both the alpha-rich freezeout and the subsequent r-process is employed. The physical properties of the neutrino-heated ejecta are deduced from a general relativistic model in which spherical symmetry and steady flow are assumed. Our results suggest that proto-neutron stars with a large compaction ratio provide the most robust physical conditions for the r-process. The third peak of the r-process is well reproduced in the winds from these ``compact'' proto-neutron stars even for a moderate entropy, \sim 100-200 N_A k, and a neutrino luminosity as high as \sim 10^{52} ergs s^{-1}. This is due to the short dynamical timescale of material in the wind. As a result, the overproduction of nuclei with A \lesssim 120 is diminished (although some overproduction of nuclei with A \approx 90 is still evident). The abundances of the r-process elements per event is significantly higher than in previous studies. The total-integrated nucleosynthesis yields are in good agreement with the solar r-process abundance pattern. Our results have confirmed that the neutrino-driven wind scenario is still a promising site in which to form the solar r-process abundances. However, our best results seem to imply both a rather soft neutron-star equation of state and a massive proto-neutron star which is difficult to achieve with standard core-collapse models. We propose that the most favorable conditions perhaps require that a massive supernova progenitor forms a massive proto-neutron star by accretion after a failed initial neutrino burst.Comment: 12 pages, 6 figures, accepted for publication in the Astrophysical Journa

    Holographic Techni-dilaton

    Full text link
    Techni-dilaton, a pseudo-Nambu-Goldstone boson of scale symmetry, was predicted long ago in the Scale-invariant/Walking/Conformal Technicolor (SWC-TC) as a remnant of the (approximate) scale symmetry associated with the conformal fixed point, based on the conformal gauge dynamics of ladder Schwinger-Dyson (SD) equation with non-running coupling. We study the techni-dilaton as a flavor-singlet bound state of techni-fermions by including the techni-gluon condensate (tGC) effect into the previous (bottom-up) holographic approach to the SWC-TC, a deformation of the holographic QCD with γm0\gamma_m \simeq 0 by large anomalous dimension γm1\gamma_m \simeq 1. With including a bulk scalar field corresponding to the gluon condensate, we first improve the Operator Product Expansion of the current correlators so as to reproduce gluonic 1/Q41/Q^4 term both in QCD and SWC-TC. We find in QCD about 10%10\% (negative) contribution of gluon condensate to the ρ\rho meson mass. We also calculate the oblique electroweak SS-parameter in the presence of the effect of the tGC and find that for the fixed value of SS the tGC effects dramatically reduce the flavor-singlet scalar (techni-dilaton) mass MTDM_{\rm TD} (in the unit of FπF_\pi), while the vector and axial-vector masses MρM_\rho and Ma1M_{a_1} are rather insensitive to the tGC, where FπF_\pi is the decay constant of the techni-pion. If we use the range of values of tGC implied by the ladder SD analysis of the non-perturbative scale anomaly in the large NfN_f QCD near the conformal window, the phenomenological constraint S0.1S \simeq 0.1 predicts the techni-dilaton mass MTD600M_{\rm TD} \sim 600 GeV which is within reach of LHC discovery.Comment: 28 pages, 11 eps files, typos corrected, references added, Fig.1 corrected, some discussions added, to be published in PR

    Development of 3D CAD/FEM Analysis System for Natural Teeth and Jaw Bone Constructed from X-Ray CT Images

    Get PDF
    A three-dimensional finite element model of the lower first premolar, with the three layers of enamel, dentin, and pulp, and the mandible, with the two layers of cortical and cancellous bones, was directly constructed from noninvasively acquired CT images. This model was used to develop a system to analyze the stresses on the teeth and supporting bone structure during occlusion based on the finite element method and to examine the possibility of mechanical simulation

    Three-dimensional finite element analysis of anterior two-unit cantilever resin-bonded fixed dental prostheses

    Get PDF
    The aim of this study was to evaluate the influence of different framework materials on biomechanical behaviour of anterior two-unit cantilever resin-bonded fixed dental prostheses (RBFDPs). A three-dimensional finite element model of a two-unit cantilever RBFDP replacing amaxillary lateral incisorwas created. Five frameworkmaterialswere evaluated: direct fibre-reinforced composite (FRC-Z250), indirect fibre-reinforced composite (FRC-ES), gold alloy (M), glass ceramic (GC), and zirconia (ZI). Finite element analysis was performed and stress distribution was evaluated. A similar stress pattern, with stress concentrations in the connector area, was observed in RBFDPs for all materials.Maximal principal stress showed a decreasing order: ZI >M>GC> FRC-ES > FRCZ250. The maximum displacement of RBFDPs was higher for FRC-Z250 and FRC-ES than for M, GC, and ZI. FE analysis depicted differences in location of the maximum stress at the luting cement interface between materials. For FRC-Z250 and FRC-ES, the maximum stress was located in the upper part of the proximal area of the retainer, whereas, for M, GC, and ZI, the maximum stress was located at the cervical outline of the retainer. The present study revealed differences in biomechanical behaviour between all RBFDPs.The general observation was that a RBFDP made of FRC provided a more favourable stress distribution

    Enrichment of the r-process Element Europium in the Galactic Halo

    Get PDF
    We investigate the enrichment of europium, as a representative of r-process elements, in the Galactic halo. In present chemical evolution models, stars are assumed to be formed through shock processes by supernovae (SNe). The enrichment of the interstellar medium is calculated by a one-zone approach. The observed large dispersions in [Eu/Fe] for halo stars, converging with increasing metallicity, can be explained with our models. In addition, the mass range of SNe for the {\it r}-process site is constrained to be either stars of 810M8-10 M_\odot or 30M\gtrsim 30 M_\odot.Comment: 5 pages (including 4 figures), LaTeX, uses aas2pp4.sty, accepted to ApJ

    First-principles study on scanning tunneling microscopy images of hydrogen-terminated Si(110) surfaces

    Full text link
    Scanning tunneling microscopy images of hydrogen-terminated Si(110) surfaces are studied using first-principles calculations. Our results show that the calculated filled-state images and local density of states are consistent with recent experimental results, and the empty-state images appear significantly different from the filled-state ones. To elucidate the origin of this difference, we examined in detail the local density of states, which affects the images, and found that the bonding and antibonding states of surface silicon atoms largely affect the difference between the filled- and empty-state images.Comment: 4 pages, and 4 figure
    corecore