63,038 research outputs found

    Spin Gaps in a Frustrated Heisenberg model for CaV4_4O9_9

    Full text link
    I report results of a density matrix renormalization group (DMRG) study of a model for the two dimensional spin-gapped system CaV4_4O9_9. This study represents the first time that DMRG has been used to study a two dimensional system on large lattices, in this case as large as 24×1124\times 11, allowing extrapolation to the thermodynamic limit. I present a substantial improvement to the DMRG algorithms which makes these calculations feasible.Comment: 10 pages, with 4 Postscript figure

    On Deriving Space-Time From Quantum Observables and States

    Full text link
    We prove that, under suitable assumptions, operationally motivated data completely determine a space-time in which the quantum systems can be interpreted as evolving. At the same time, the dynamics of the quantum system is also determined. To minimize technical complications, this is done in the example of three-dimensional Minkowski space.Comment: 19 pages, to appear in Communications in Mathematical Physics; minor corrections mad

    Control System Design Philosophy for Effective Operations and Maintenance

    Full text link
    A well-designed control system facilitates the functions of machine operation, maintenance and development. In addition, the overall effectiveness of the control system can be greatly enhanced by providing reliable mechanisms for coordination and communication, ensuring that these functions work in concert. For good operability, the information presented to operators should be consistent, easy to understand and customizable. A maintainable system is segmented appropriately, allowing a broken element to be quickly identified and repaired while leaving the balance of the system available. In a research and development environment, the control system must meet the frequently changing requirements of a variety of customers. This means the system must be flexible enough to allow for ongoing modifications with minimal disruptions to operations. Beyond the hardware and software elements of the control system, appropriate workflow processes must be in place to maximize system uptime and allow people to work efficiently. Processes that provide automatic electronic communication ensure that information is not lost and reaches its destination in a timely fashion. This paper discusses how these control system design and quality issues have been applied at the Thomas Jefferson National Accelerator Facility.Comment: ICALEPCS 200

    Using A Nameserver to Enhance Control System Efficiency

    Full text link
    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) control system uses a nameserver to reduce system response time and to minimize the impact of client name resolution on front-end computers. The control system is based on the Experimental Physics and Industrial Control System (EPICS), which uses name-based broadcasts to initiate data communication. By default, when EPICS process variables (PV) are requested by client applications, all front-end computers receive the broadcasts and perform name resolution processing against local channel name lists. The nameserver is used to offload the name resolution task to a single node. This processing, formerly done on all front-end computers, is now done only by the nameserver. In a control system with heavily loaded front-end computers and high peak client connection loads, a significant performance improvement is seen. This paper describes the name server in more detail, and discusses the strengths and weaknesses of making name resolution a centralized service.Comment: ICALEPCS 200

    Energetics of Domain Walls in the 2D t-J model

    Full text link
    Using the density matrix renormalization group, we calculate the energy of a domain wall in the 2D t-J model as a function of the linear hole density \rho_\ell, as well as the interaction energy between walls, for J/t=0.35. Based on these results, we conclude that the ground state always has domain walls for dopings 0 < x < 0.3. For x < 0.125, the system has (1,0) domain walls with \rho_\ell ~ 0.5, while for 0.125 < x < 0.17, the system has a possibly phase-separated mixture of walls with \rho_\ell ~ 0.5 and \rho_\ell =1. For x > 0.17, there are only walls with \rho_\ell =1. For \rho_\ell = 1, diagonal (1,1) domain walls have very nearly the same energy as (1,0) domain walls.Comment: Several minor changes. Four pages, four encapsulated figure

    Phase diagram of the half-filled Hubbard chain with next-nearest-neighbor hopping

    Full text link
    We investigate the ground-state phase diagram of the half-filled one-dimensional Hubbard model with next-nearest-neighbor hopping using the Density-Matrix Renormalization Group technique as well as an unrestricted Hartree-Fock approximation. We find commensurate and incommensurate disordered magnetic insulating phases and a spin-gapped metallic phase in addition to the one-dimensional Heisenberg phase. At large on-site Coulomb repulsion UU, we make contact with the phase diagram of the frustrated Heisenberg chain, which has spin-gapped phases for sufficiently large frustration. For weak UU, sufficiently large next-nearest-neighbor hopping t2t_2 leads to a band structure with four Fermi points rather than two, producing a spin-gapped metallic phase. As UU is increased in this regime, the system undergoes a Mott-Hubbard transition to a frustrated antiferromagnetic insulator

    Comment on "Kagome Lattice Antiferromagnet Stripped to Its Basics"

    Full text link
    Density matrix renormalization group (DMRG) calculations on large systems (up to 3096 spins) indicate that the ground state of the Heisenberg model on a 3-chain Kagome strip is spontaneously dimerized. This system has degenerate ground states and a gap to triplet and singlet excitations. These results are in direct contradiction with recent results of Azaria et al (Phys. Rev. Lett. 81, 1694 (1998)) and suggest a need for a reexamination of the underlying field theory.Comment: 1 page, submitted to PR

    First ALMA Observation of a Solar Plasmoid Ejection from an X-ray Bright Point

    Get PDF
    Eruptive phenomena such as plasmoid ejections or jets are an important feature of solar activity with the potential for improving our understanding of the dynamics of the solar atmosphere. Such ejections are often thought to be signatures of the outflows expected in regions of fast magnetic reconnection. The 304 A EUV line of Helium, formed at around 10^5 K, is found to be a reliable tracer of such phenomena, but the determination of physical parameters from such observations is not straightforward. We have observed a plasmoid ejection from an X-ray bright point simultaneously at millimeter wavelengths with ALMA, at EUV wavelengths with AIA, in soft X-rays with Hinode/XRT. This paper reports the physical parameters of the plasmoid obtained by combining the radio, EUV and X-ray data. As a result, we conclude that the plasmoid can consist either of (approximately) isothermal 10^5 K plasma that is optically thin at 100 GHz, or else a 10^4 K core with a hot envelope. The analysis demonstrates the value of the additional temperature and density constraints that ALMA provides, and future science observations with ALMA will be able to match the spatial resolution of space-borne and other high-resolution telescopes.Comment: 10 page, 5 figures, accepted for publication in Astrophysical Journal Letter. The movie can be seen at the following link: http://hinode.nao.ac.jp/user/shimojo/data_area/plasmoid/movie5.mp
    • …
    corecore