8 research outputs found

    ОбоснованиС Π²Ρ‹Π±ΠΎΡ€Π° Π²ΠΈΠ½Ρ‚ΠΎΠ²Ρ‹Ρ… насосных установок ΠΊΠ°ΠΊ энСргоэффСктивной Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π΄ΠΎΠ±Ρ‹Ρ‡ΠΈ

    Get PDF
    The paper analyzes the main techniques and technologies of oil fluid recovery in the context of energy consumption, significantly rising over the latest decade. It is recognized that the number of publications in the area of energy efficiency is growing steadily. Currently Russian oil and gas industry are facing the task of accelerating reduction of energy consumption while preserving, or even increasing, production rates. The task is complicated by the fact that the majority of deposits in Russia either have already entered (primarily, Volga-Ural region) or are now entering (West Siberia) their last stage of exploration, whereas new deposits in East Siberia are only being brought into production. Furthermore, a lot of new deposits, which provide for high recovery rates, are profitable a priori as at the first stage of exploration they do not need any artificial lift due to their free flow production without any oil well pumps. However, there is a significant share of new deposits with low-permeability reservoirs, which require either a system of reservoir pressure maintenance or periodic hydraulic fracturing. At the same time deposits at the late stages of exploration, apart from the use of pump units, systems of reservoir pressure maintenance and hydraulic fracturing, require regular repair and restoration, measures against salt and heavy oil sediments, mechanical impurities, flooding, etc., which all has a negative effect on well profitability. In order to solve these problems, the authors review existing methods and calculate specific energy consumption using various pump systems for hypothetical wells, varying in yield. According to the research results, it has been revealed that from the point of view of energy efficiency, it is desirable to equip low- and low-yield wells with sucker rod progressive cavity pump units, medium-yield ones – with electric progressive cavity pumps driven by permanent magnet motor, medium- and high-yield wells – with electric progressive cavity pumps or electric submersible pumps driven by permanent magnet motor, depending on the characteristics of the pumpedout oil fluid.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ основныС Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ ΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ Π΄ΠΎΠ±Ρ‹Ρ‡ΠΈ нСфтяного Ρ„Π»ΡŽΠΈΠ΄Π° Π² условиях Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ роста Ρ†Π΅Π½ Π½Π° ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΡΠ½Π΅Ρ€Π³ΠΈΡŽ Π·Π° послСднСС дСсятилСтиС. ΠžΡ‚ΠΌΠ΅Ρ‡Π΅Π½ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ рост ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΉ ΠΏΠΎ Ρ‚Π΅ΠΌΠ΅ энСргоэффСктивности. Для российской Π½Π΅Ρ„Ρ‚Π΅Π³Π°Π·ΠΎΠ΄ΠΎΠ±Ρ‹Π²Π°ΡŽΡ‰Π΅ΠΉ ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΡΡ‚ΠΈ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Π° Π·Π°Π΄Π°Ρ‡Π° сниТСния энСгозатрат ΠΏΡ€ΠΈΒ  сохранСнии ΠΈΠ»ΠΈ Π΄Π°ΠΆΠ΅ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ Ρ‚Π΅ΠΌΠΏΠΎΠ² производства. Она ослоТняСтся Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ мСстороТдСний Π»ΠΈΠ±ΠΎ ΡƒΠΆΠ΅ вступило (Π’ΠΎΠ»Π³ΠΎ-Π£Ρ€Π°Π»ΡŒΡΠΊΠΈΠΉ Ρ€Π΅Π³ΠΈΠΎΠ½), Π»ΠΈΠ±ΠΎ вступаСт (Западная Π‘ΠΈΠ±ΠΈΡ€ΡŒ) Π² послСднюю ΡΡ‚Π°Π΄ΠΈΡŽ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ, Ρ‚ΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ Π½ΠΎΠ²Ρ‹Π΅ мСстороТдСния Восточной Π‘ΠΈΠ±ΠΈΡ€ΠΈ Π΅Ρ‰Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ вводятся Π² ΡΠΊΡΠΏΠ»ΡƒΠ°Ρ‚Π°Ρ†ΠΈΡŽ. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΌΠ½ΠΎΠ³ΠΈΠ΅ Π½ΠΎΠ²Ρ‹Π΅ мСстороТдСния, ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ высокий Π΄Π΅Π±Π΅Ρ‚, Ρ€Π΅Π½Ρ‚Π°Π±Π΅Π»ΡŒΠ½Ρ‹ Π°ΠΏΡ€ΠΈΠΎΡ€ΠΈ, Π½Π° ΠΏΠ΅Ρ€Π²ΠΎΠΌ этапС эксплуатации Π½Π΅ Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‚ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΈ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Ρ€Π°Π·Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°ΡŽΡ‚ΡΡ Ρ„ΠΎΠ½Ρ‚Π°Π½Π½Ρ‹ΠΌ способом, Π±Π΅Π· использования скваТинных насосных установок. Но ΠΏΡ€ΠΈ этом Π½Π΅ΠΌΠ°Π»ΠΎ ΠΈ Π½ΠΎΠ²Ρ‹Ρ… мСстороТдСний с Π½ΠΈΠ·ΠΊΠΎΠΏΡ€ΠΎΠ½ΠΈΡ†Π°Π΅ΠΌΡ‹ΠΌΠΈ ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΎΡ€Π°ΠΌΠΈ, Π½Π° ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ систСмой поддСрТания пластового давлСния Π»ΠΈΠ±ΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ пСриодичСски гидравличСского Ρ€Π°Π·Ρ€Ρ‹Π²Π° пласта. На мСстороТдСниях ΠΏΠΎΠ·Π΄Π½Π΅ΠΉ стадии Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ рСгулярно ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡ‚ΡŒ Ρ€Π΅ΠΌΠΎΠ½Ρ‚Π½ΠΎ-Π²ΠΎΡΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹, вСсти Π±ΠΎΡ€ΡŒΠ±Ρƒ с отлоТСниями солСй, Π°ΡΡ„Π°Π»ΡŒΡ‚ΠΎΡΠΌΠΎΠ»ΠΎΠΏΠ°Ρ€Π°Ρ„ΠΈΠ½ΠΎΠ², мСханичСскими примСсями, ΠΎΠ±Π²ΠΎΠ΄Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΈ ΠΏΡ€., Ρ‡Ρ‚ΠΎ Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎ сказываСтся Π½Π° Ρ€Π΅Π½Ρ‚Π°Π±Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ скваТин. Для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ этих Π·Π°Π΄Π°Ρ‡ Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ рассмотрСны ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ расчСты ΡƒΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ… энСргозатрат ΠΏΡ€ΠΈ использовании Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… насосных установок для условных скваТин, ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‰ΠΈΡ…ΡΡ Π΄Π΅Π±ΠΈΡ‚ΠΎΠΌ. По Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ исслСдований выявлСно, Ρ‡Ρ‚ΠΎ с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния энСргоэффСктивности Π½ΠΈΠ·ΠΊΠΎ- ΠΈ ΠΌΠ°Π»ΠΎΠ΄Π΅Π±ΠΈΡ‚Π½Ρ‹Π΅ скваТины ΠΆΠ΅Π»Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΎΡΠ½Π°Ρ‰Π°Ρ‚ΡŒ ΡˆΡ‚Π°Π½Π³ΠΎΠ²Ρ‹ΠΌΠΈ Π²ΠΈΠ½Ρ‚ΠΎΠ²Ρ‹ΠΌΠΈ насосными установками, срСднСдСбитныС – элСктровинтовыми с Π²Π΅Π½Ρ‚ΠΈΠ»ΡŒΠ½Ρ‹ΠΌΠΈ двигатСлями, срСднС- ΠΈ высокодСбитныС – элСктровинтовыми ΠΈΠ»ΠΈ элСктроцСнтробСТными Π² зависимости ΠΎΡ‚ характСристик Π²Ρ‹ΠΊΠ°Ρ‡ΠΈΠ²Π°Π΅ΠΌΠΎΠ³ΠΎ нСфтяного Ρ„Π»ΡŽΠΈΠ΄Π°

    Анализ эффСктивности примСнСния Π΄Π²ΡƒΡ… Ρ€Π°Π±ΠΎΡ‡ΠΈΡ… ТидкостСй с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ вязкоупругими характСристиками ΠΏΡ€ΠΈ гидродинамичСском воздСйствии Π½Π° ΠΏΡ€ΠΈΠ·Π°Π±ΠΎΠΉΠ½ΡƒΡŽ Π·ΠΎΠ½Ρƒ пласта

    Get PDF
    Combination of hydrodynamic impact on the formation with acid treatment may be seen as a promising direction in the field of well development and repair in complex geological conditions. With multiple repetition of hydraulic shocks in conjunction with the injection of acid solution, the depth and opening of cracks gradually increases, which contributes to a deeper penetration of the acid solution into the reservoir. The article presents analytical studies, which are aimed at determining the effectiveness of applying the technology of hydrodynamic impact on the bottomhole zone of an oil reservoir when using two fluids with different viscoelastic characteristics as a working fluid. They are devoted to determining the pressure drop at the borehole bottom depending on the initial applied pressure at the wellhead, the velocity of the shock wave, the viscosity of the working and well fluid, and their quantity. These studies were based on the well-known models of Thomson – TΠ°t and Maxwell, considering viscous liquid flow. The dependence obtained proves that with an increase in the pressure pulse generated at the wellhead, the development of pressure pulses at the borehole bottom is a power-law dependence, and with significant volumes of fluid in contact with the bottomhole formation zone, the pressure drop generated at the borehole bottom does not depend only on pressure pulses generated at the wellhead, but also on the dynamic viscosity of this fluid. Conducted studies have shown the effectiveness of hydrodynamic impact technology application when using two liquids with different viscoelastic characteristics and obtaining a synergistic effect during the development and repair of wells in low-permeable reservoirs. Analytical studies were based on data from previously conducted experimental industrial tests on the operating injection well.ΠŸΠ΅Ρ€ΡΠΏΠ΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ освоСния ΠΈ Ρ€Π΅ΠΌΠΎΠ½Ρ‚Π° скваТин Π² слоТных гСологичСских условиях являСтся совмСщСниС гидродинамичСского воздСйствия Π½Π° пласт с кислотной ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΎΠΉ. ΠŸΡ€ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠΊΡ€Π°Ρ‚Π½ΠΎΠΌ ΠΏΠΎΠ²Ρ‚ΠΎΡ€Π΅Π½ΠΈΠΈ Π³ΠΈΠ΄Ρ€ΠΎΡƒΠ΄Π°Ρ€ΠΎΠ² Π² совокупности с Π·Π°ΠΊΠ°Ρ‡ΠΊΠΎΠΉ кислотного раствора постСпСнно ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‚ΡΡ Π³Π»ΡƒΠ±ΠΈΠ½Π° ΠΈ Ρ€Π°ΡΠΊΡ€Ρ‹Ρ‚ΠΎΡΡ‚ΡŒ Ρ‚Ρ€Π΅Ρ‰ΠΈΠ½, Ρ‡Ρ‚ΠΎ способствуСт Π±ΠΎΠ»Π΅Π΅ Π³Π»ΡƒΠ±ΠΎΠΊΠΎΠΌΡƒ ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΡŽ кислотного раствора Π² пласт. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ проводятся аналитичСскиС исслСдования, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹Π΅ Π½Π° установлСниС эффСктивности примСнСния Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ гидродинамичСского воздСйствия Π½Π° ΠΏΡ€ΠΈΠ·Π°Π±ΠΎΠΉΠ½ΡƒΡŽ Π·ΠΎΠ½Ρƒ нСфтяного пласта ΠΏΡ€ΠΈ использовании Π² качСствС Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ Тидкости Π΄Π²ΡƒΡ… ТидкостСй с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ вязкоупругими характСристиками. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ ΠΏΠ΅Ρ€Π΅ΠΏΠ°Π΄ давлСния Π½Π° Π·Π°Π±ΠΎΠ΅ скваТины, зависящий ΠΎΡ‚ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Ρ‹Π²Π°Π΅ΠΌΠΎΠ³ΠΎ давлСния Π½Π° ΡƒΡΡ‚ΡŒΠ΅, скорости ΡƒΠ΄Π°Ρ€Π½ΠΎΠΉ Π²ΠΎΠ»Π½Ρ‹, вязкости Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ ΠΈ скваТинной ТидкостСй ΠΈ ΠΈΡ… количСства. ИсслСдования Π±Π°Π·ΠΈΡ€ΠΎΠ²Π°Π»ΠΈΡΡŒ Π½Π° извСстных модСлях тСчСния вязкой Тидкости Вомсона – Вэта ΠΈ МаксвСлла. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Π°Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ Π΄ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠΈ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° давлСния, сгСнСрированного Π½Π° ΡƒΡΡ‚ΡŒΠ΅ скваТины, Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² давлСния Π½Π° Π·Π°Π±ΠΎΠ΅ происходит ΠΏΠΎ стСпСнной зависимости ΠΏΡ€ΠΈ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠ±ΡŠΠ΅ΠΌΠ°Ρ… Тидкости, ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚ΠΈΡ€ΡƒΡŽΡ‰Π΅ΠΉ с ΠΏΡ€ΠΈΠ·Π°Π±ΠΎΠΉΠ½ΠΎΠΉ Π·ΠΎΠ½ΠΎΠΉ пласта; ΠΏΠ΅Ρ€Π΅ΠΏΠ°Π΄ давлСния, создаваСмый Π½Π° Π·Π°Π±ΠΎΠ΅ скваТины, зависит Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΡ‚ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠΎΠ² давлСния, Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Π½Π° ΡƒΡΡ‚ΡŒΠ΅ скваТины, Π½ΠΎ ΠΈ ΠΎΡ‚ динамичСской вязкости этой Тидкости. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ исслСдования Π΄ΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ примСнСния Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ гидродинамичСского воздСйствия ΠΏΡ€ΠΈ использовании Π΄Π²ΡƒΡ… ТидкостСй с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ вязкоупругими характСристиками ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ синСргСтичСского эффСкта ΠΏΡ€ΠΈ освоСнии ΠΈ Ρ€Π΅ΠΌΠΎΠ½Ρ‚Π΅ скваТин Π² Π½ΠΈΠ·ΠΊΠΎΠΏΡ€ΠΎΠ½ΠΈΡ†Π°Π΅ΠΌΡ‹Ρ… ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΎΡ€Π°Ρ…. АналитичСскиС исслСдования Π±Π°Π·ΠΈΡ€ΠΎΠ²Π°Π»ΠΈΡΡŒ Π½Π° Π΄Π°Π½Π½Ρ‹Ρ… Ρ€Π°Π½Π΅Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΠΏΡ‹Ρ‚Π½ΠΎ-ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΠ³ΠΎ испытания Π½Π° Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Π½Π°Π³Π½Π΅Ρ‚Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ скваТинС

    ЭлСктроснабТСниС станции Π½Π°Π³Ρ€Π΅Π²Π° Π½Π΅Ρ„Ρ‚ΠΈ Π² скваТинС ΠΎΡ‚ вСтроэлСктричСской установки

    Get PDF
    In this article, the authors reviewed a new technology to prevent the formation of asphalt-resin-paraffin deposits by the thermal method of electrothermal impact on the oil wellbore shaft using a wind-electric installation as an autonomous power source. The advantage of this thermal stimulation technique lies in its continuous nature, which will allow keeping the clear opening of the tubing constant. The scheme of the autonomous system for down-hole electric heating of oil is presented. A tubular or induction heater can serve as an electric heating element placed in the well. The heating element of the system can be used in the wells exploited by freeflow, gas lift and mechanized methods, while its installation does not require an overhaul. The paraffin oil saturation temperature and temperature distribution over the depth of the well were defined. The amount of heat, which must be transferred to the oil mixture in the tubing in order to ensure effective operation of the well, taking into account the dynamic state of the system, is calculated. The optimal depth of the heating element's location in the well and its power was determined. The calculation of the required power for wind-electric installation to maintain the set temperature in the wellbore was performed. Having conducted the studies, it was revealed that in order to prevent the asphalt-resin-paraffin deposits formation on the tubing walls of oil wells, it is expedient to use the in-line heater, which maintains the average steady-state temperature along the wellbore and at the wellhead above the initial crystallization point of the asphaltresin-paraffin deposits. The application of the developed electrothermal system is relevant in the conditions of formation of asphalt-resin-paraffin deposits in the wellbore shaft at the fields, which do not have a connection to the centralized power grid.РассмотрСна новая тСхнология прСдупрСТдСния образования Π°ΡΡ„Π°Π»ΡŒΡ‚ΠΎΡΠΌΠΎΠ»ΠΎΠΏΠ°Ρ€Π°Ρ„ΠΈΠ½ΠΎΠ²Ρ‹Ρ… ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ элСктротСрмичСского воздСйствия Π½Π° ствол нСфтяной скваТины с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ вСтроэлСктричСской установки Π² качСствС Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½ΠΎΠ³ΠΎ источника питания. Достоинством Π΄Π°Π½Π½ΠΎΠ³ΠΎ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠ³ΠΎ способа воздСйствия являСтся Π΅Π³ΠΎ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹ΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€, Ρ‡Ρ‚ΠΎ позволяСт ΡΠΎΡ…Ρ€Π°Π½ΡΡ‚ΡŒ пропускноС сСчСниС насосно-компрСссорных Ρ‚Ρ€ΡƒΠ± постоянным. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π° схСма Π°Π²Ρ‚ΠΎΠ½ΠΎΠΌΠ½ΠΎΠ³ΠΎ комплСкса для внутрискваТинного элСктропрогрСва Π½Π΅Ρ„Ρ‚ΠΈ. Π’ качСствС ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π°Π³Ρ€Π΅Π²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ элСмСнта, Ρ€Π°Π·ΠΌΠ΅Ρ‰Π°Π΅ΠΌΠΎΠ³ΠΎ Π² скваТинС, ΠΌΠΎΠΆΠ΅Ρ‚ Π²Ρ‹ΡΡ‚ΡƒΠΏΠ°Ρ‚ΡŒ Ρ‚Ρ€ΡƒΠ±Ρ‡Π°Ρ‚Ρ‹ΠΉ ΠΈΠ»ΠΈ ΠΈΠ½Π΄ΡƒΠΊΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ Π½Π°Π³Ρ€Π΅Π²Π°Ρ‚Π΅Π»ΡŒ. ΠΠ°Π³Ρ€Π΅Π²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ элСмСнт комплСкса ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ Π² скваТинах, эксплуатируСмых Ρ„ΠΎΠ½Ρ‚Π°Π½Π½Ρ‹ΠΌ, Π³Π°Π·Π»ΠΈΡ„Ρ‚Π½Ρ‹ΠΌ ΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ способами, ΠΏΡ€ΠΈ этом для Π΅Π³ΠΎ установки Π½Π΅ трСбуСтся провСдСния ΠΊΠ°ΠΏΠΈΡ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΠΌΠΎΠ½Ρ‚Π°. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° насыщСния Π½Π΅Ρ„Ρ‚ΠΈ ΠΏΠ°Ρ€Π°Ρ„ΠΈΠ½ΠΎΠΌ ΠΈ Π΅Π΅ распрСдСлСниС ΠΏΠΎ Π³Π»ΡƒΠ±ΠΈΠ½Π΅ скваТины. Рассчитано количСство Ρ‚Π΅ΠΏΠ»ΠΎΡ‚Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡΠΎΠΎΠ±Ρ‰ΠΈΡ‚ΡŒ скваТинной ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ†ΠΈΠΈ Π² насосно-компрСссорных Ρ‚Ρ€ΡƒΠ±Π°Ρ… для обСспСчСния эффСктивного Ρ€Π΅ΠΆΠΈΠΌΠ° эксплуатации скваТины с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ динамичСского состояния систСмы. УстановлСны ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Π°Ρ Π³Π»ΡƒΠ±ΠΈΠ½Π° располоТСния Π½Π°Π³Ρ€Π΅Π²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ элСмСнта Π² скваТинС ΠΈ Π΅Π³ΠΎ ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ. Π’Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ расчСт Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠΉ мощности вСтроэлСктричСской установки для поддСрТания Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π² стволС скваТины. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ исслСдования ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ для прСдотвращСния образования Π°ΡΡ„Π°Π»ΡŒΡ‚ΠΎΡΠΌΠΎΠ»ΠΎΠΏΠ°Ρ€Π°Ρ„ΠΈΠ½ΠΎΠ²Ρ‹Ρ… ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ Π½Π° стСнках насосно-компрСссорных Ρ‚Ρ€ΡƒΠ± нСфтяных скваТин цСлСсообразно ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€ΠΎΡ‚ΠΎΡ‡Π½Ρ‹ΠΉ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π°Π³Ρ€Π΅Π²Π°Ρ‚Π΅Π»ΡŒ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ обСспСчиваСт ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅ срСднСй ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅ΠΉΡΡ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΏΠΎ стволу ΠΈ Π½Π° ΡƒΡΡ‚ΡŒΠ΅ скваТины Π²Ρ‹ΡˆΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ кристаллизации Π°ΡΡ„Π°Π»ΡŒΡ‚ΠΎΡΠΌΠΎΠ»ΠΎΠΏΠ°Ρ€Π°Ρ„ΠΈΠ½ΠΎΠ²Ρ‹Ρ… ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ. ΠŸΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ элСктротСрмичСского комплСкса являСтся Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΌ Π² условиях образования Π°ΡΡ„Π°Π»ΡŒΡ‚ΠΎΡΠΌΠΎΠ»ΠΎΠΏΠ°Ρ€Π°Ρ„ΠΈΠ½ΠΎΠ²Ρ‹Ρ… ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½ΠΈΠΉ Π² стволС скваТины Π½Π° мСстороТдСниях, Π½Π΅ ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ… ΠΏΠΎΠ΄ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ ΠΊ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠΉ энСргосистСмС установки для поддСрТания Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π² стволС скваТины

    Анализ эффСктивности примСнСния Π΄Π²ΡƒΡ… Ρ€Π°Π±ΠΎΡ‡ΠΈΡ… ТидкостСй с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ вязкоупругими характСристиками ΠΏΡ€ΠΈ гидродинамичСском воздСйствии Π½Π° ΠΏΡ€ΠΈΠ·Π°Π±ΠΎΠΉΠ½ΡƒΡŽ Π·ΠΎΠ½Ρƒ пласта

    Get PDF
    Combination of hydrodynamic impact on the formation with acid treatment may be seen as a promising direction in the field of well development and repair in complex geological conditions. With multiple repetition of hydraulic shocks in conjunction with the injection of acid solution, the depth and opening of cracks gradually increases, which contributes to a deeper penetration of the acid solution into the reservoir. The article presents analytical studies, which are aimed at determining the effectiveness of applying the technology of hydrodynamic impact on the bottomhole zone of an oil reservoir when using two fluids with different viscoelastic characteristics as a working fluid. They are devoted to determining the pressure drop at the borehole bottom depending on the initial applied pressure at the wellhead, the velocity of the shock wave, the viscosity of the working and well fluid, and their quantity. These studies were based on the well-known models of Thomson – TΠ°t and Maxwell, considering viscous liquid flow. The dependence obtained proves that with an increase in the pressure pulse generated at the wellhead, the development of pressure pulses at the borehole bottom is a power-law dependence, and with significant volumes of fluid in contact with the bottomhole formation zone, the pressure drop generated at the borehole bottom does not depend only on pressure pulses generated at the wellhead, but also on the dynamic viscosity of this fluid. Conducted studies have shown the effectiveness of hydrodynamic impact technology application when using two liquids with different viscoelastic characteristics and obtaining a synergistic effect during the development and repair of wells in low-permeable reservoirs. Analytical studies were based on data from previously conducted experimental industrial tests on the operating injection well

    ОбоснованиС Π²Ρ‹Π±ΠΎΡ€Π° Π²ΠΈΠ½Ρ‚ΠΎΠ²Ρ‹Ρ… насосных установок ΠΊΠ°ΠΊ энСргоэффСктивной Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π΄ΠΎΠ±Ρ‹Ρ‡ΠΈ

    Get PDF
    The paper analyzes the main techniques and technologies of oil fluid recovery in the context of energy consumption, significantly rising over the latest decade. It is recognized that the number of publications in the area of energy efficiency is growing steadily. Currently Russian oil and gas industry are facing the task of accelerating reduction of energy consumption while preserving, or even increasing, production rates. The task is complicated by the fact that the majority of deposits in Russia either have already entered (primarily, Volga-Ural region) or are now entering (West Siberia) their last stage of exploration, whereas new deposits in East Siberia are only being brought into production. Furthermore, a lot of new deposits, which provide for high recovery rates, are profitable a priori as at the first stage of exploration they do not need any artificial lift due to their free flow production without any oil well pumps. However, there is a significant share of new deposits with low-permeability reservoirs, which require either a system of reservoir pressure maintenance or periodic hydraulic fracturing. At the same time deposits at the late stages of exploration, apart from the use of pump units, systems of reservoir pressure maintenance and hydraulic fracturing, require regular repair and restoration, measures against salt and heavy oil sediments, mechanical impurities, flooding, etc., which all has a negative effect on well profitability. In order to solve these problems, the authors review existing methods and calculate specific energy consumption using various pump systems for hypothetical wells, varying in yield. According to the research results, it has been revealed that from the point of view of energy efficiency, it is desirable to equip low- and low-yield wells with sucker rod progressive cavity pump units, medium-yield ones – with electric progressive cavity pumps driven by permanent magnet motor, medium- and high-yield wells – with electric progressive cavity pumps or electric submersible pumps driven by permanent magnet motor, depending on the characteristics of the pumpedout oil fluid

    ЭлСктроснабТСниС станции Π½Π°Π³Ρ€Π΅Π²Π° Π½Π΅Ρ„Ρ‚ΠΈ Π² скваТинС ΠΎΡ‚ вСтроэлСктричСской установки

    Get PDF
    In this article, the authors reviewed a new technology to prevent the formation of asphalt-resin-paraffin deposits by the thermal method of electrothermal impact on the oil wellbore shaft using a wind-electric installation as an autonomous power source. The advantage of this thermal stimulation technique lies in its continuous nature, which will allow keeping the clear opening of the tubing constant. The scheme of the autonomous system for down-hole electric heating of oil is presented. A tubular or induction heater can serve as an electric heating element placed in the well. The heating element of the system can be used in the wells exploited by free-flow, gas lift and mechanized methods, while its installation does not require an overhaul. The paraffin oil saturation temperature and temperature distribution over the depth of the well were defined. The amount of heat, which must be transferred to the oil mixture in the tubing in order to ensure effective operation of the well, taking into account the dynamic state of the system, is calculated. The optimal depth of the heating element's location in the well and its power was determined. The calculation of the required power for wind-electric installation to maintain the set temperature in the wellbore was performed. Having conducted the studies, it was revealed that in order to prevent the asphalt-resin-paraffin deposits formation on the tubing walls of oil wells, it is expedient to use the in-line heater, which maintains the average steady-state temperature along the wellbore and at the wellhead above the initial crystallization point of the asphalt-resin-paraffin deposits. The application of the developed electrothermal system is relevant in the conditions of formation of asphalt-resin-paraffin deposits in the wellbore shaft at the fields, which do not have a connection to the centralized power grid

    ЭлСктроснабТСниС станции Π½Π°Π³Ρ€Π΅Π²Π° Π½Π΅Ρ„Ρ‚ΠΈ Π² скваТинС ΠΎΡ‚ вСтроэлСктричСской установки

    No full text
    In this article, the authors reviewed a new technology to prevent the formation of asphalt-resin-paraffin deposits by the thermal method of electrothermal impact on the oil wellbore shaft using a wind-electric installation as an autonomous power source. The advantage of this thermal stimulation technique lies in its continuous nature, which will allow keeping the clear opening of the tubing constant. The scheme of the autonomous system for down-hole electric heating of oil is presented. A tubular or induction heater can serve as an electric heating element placed in the well. The heating element of the system can be used in the wells exploited by free-flow, gas lift and mechanized methods, while its installation does not require an overhaul. The paraffin oil saturation temperature and temperature distribution over the depth of the well were defined. The amount of heat, which must be transferred to the oil mixture in the tubing in order to ensure effective operation of the well, taking into account the dynamic state of the system, is calculated. The optimal depth of the heating element's location in the well and its power was determined. The calculation of the required power for wind-electric installation to maintain the set temperature in the wellbore was performed. Having conducted the studies, it was revealed that in order to prevent the asphalt-resin-paraffin deposits formation on the tubing walls of oil wells, it is expedient to use the in-line heater, which maintains the average steady-state temperature along the wellbore and at the wellhead above the initial crystallization point of the asphalt-resin-paraffin deposits. The application of the developed electrothermal system is relevant in the conditions of formation of asphalt-resin-paraffin deposits in the wellbore shaft at the fields, which do not have a connection to the centralized power grid
    corecore