35,938 research outputs found
Two-dimensional electron system in high magnetic fields: Wigner crystal vs. composite-fermion liquid
The two dimensional system of electrons in a high magnetic field offers an
opportunity to investigate a phase transition from a quantum liquid into a
Wigner solid. Recent experiments have revealed an incipient composite fermion
liquid in a parameter range where theory and many experiments had previously
suggested the Wigner crystal phase, thus calling into question our current
understanding. This Letter shows how very small quantitative corrections (< 1%)
in the energy due to the weak interaction between composite fermions can cause
a fundamental change in the nature of the ground state, thus providing insight
into the puzzling experimental results.Comment: 4 pages, 2 figure
Nonuniversal exponents in sandpiles with stochastic particle number transfer
We study fixed density sandpiles in which the number of particles transferred
to a neighbor on relaxing an active site is determined stochastically by a
parameter . Using an argument, the critical density at which an
active-absorbing transition occurs is found exactly. We study the critical
behavior numerically and find that the exponents associated with both static
and time-dependent quantities vary continuously with .Comment: Some parts rewritten, results unchanged. To appear in Europhys. Let
Relevance of inter-composite fermion interaction to the edge Tomonaga-Luttinger liquid
It is shown that Wen's effective theory correctly describes the
Tomonaga-Luttinger liquid at the edge of a system of non-interacting composite
fermions. However, the weak residual interaction between composite fermions
appears to be a relevant perturbation. The filling factor dependence of the
Tomonaga-Luttinger parameter is estimated for interacting composite fermions in
a microscopic approach and satisfactory agreement with experiment is achieved.
It is suggested that the electron field operator may not have a simple
representation in the effective one dimensional theory.Comment: 5 pages; accepted in Phys. Rev. Let
Strain energy calculations of hexagonal boron nanotubes: An ab-initio approach
An ab initio calculations have been carried out for examining the curvature
effect of small diameter hexagonal boron nanotubes. The considered
conformations of boron nanotubes are namely armchair (3,3), zigzag (5,0) and
chiral (4,2), and consist of 12, 20, and 56 atoms, respectively. The strain
energy is evaluated in order to examine the curvature effect. It is found that
the strain energy of hexagonal BNT strongly depends upon the radius, whereas
the strain energy of triangular BNTs depends on both radius and chirality.Comment: 7 pages, 4 figure
Eigenvalue spectrum for single particle in a spheroidal cavity: A Semiclassical approach
Following the semiclassical formalism of Strutinsky et al., we have obtained
the complete eigenvalue spectrum for a particle enclosed in an infinitely high
spheroidal cavity. Our spheroidal trace formula also reproduces the results of
a spherical billiard in the limit . Inclusion of repetition of each
family of the orbits with reference to the largest one significantly improves
the eigenvalues of sphere and an exact comparison with the quantum mechanical
results is observed upto the second decimal place for . The
contributions of the equatorial, the planar (in the axis of symmetry plane) and
the non-planar(3-Dimensional) orbits are obtained from the same trace formula
by using the appropriate conditions. The resulting eigenvalues compare very
well with the quantum mechanical eigenvalues at normal deformation. It is
interesting that the partial sum of equatorial orbits leads to eigenvalues with
maximum angular momentum projection, while the summing of planar orbits leads
to eigenvalues with except for L=1. The remaining quantum mechanical
eigenvalues are observed to arise from the 3-dimensional(3D) orbits. Very few
spurious eigenvalues arise in these partial sums. This result establishes the
important role of 3D orbits even at normal deformations.Comment: 17 pages, 7 ps figure
Activation gaps for the fractional quantum Hall effect: realistic treatment of transverse thickness
The activation gaps for fractional quantum Hall states at filling fractions
are computed for heterojunction, square quantum well, as well as
parabolic quantum well geometries, using an interaction potential calculated
from a self-consistent electronic structure calculation in the local density
approximation. The finite thickness is estimated to make 30% correction
to the gap in the heterojunction geometry for typical parameters, which
accounts for roughly half of the discrepancy between the experiment and
theoretical gaps computed for a pure two dimensional system. Certain model
interactions are also considered. It is found that the activation energies
behave qualitatively differently depending on whether the interaction is of
longer or shorter range than the Coulomb interaction; there are indications
that fractional Hall states close to the Fermi sea are destabilized for the
latter.Comment: 32 pages, 13 figure
Laser heterodyne system for obtaining height profiles of minor species in the atmosphere
An infrared laser heterodyne system for obtaining height profiles of minor constituents of the atmosphere was developed and erected. A brief discription of the system is given. The system consists of a tunable CO2 waveguide laser in the 9 to 11 micrometer band, that is used as a local oscillator and a heliostat that follows the sun and brings in solar radiation, that is mixed with the laser beam in a high speed liquid nitrogen cooled mercury cadmium telluride detector. The detected signal is analysed in a RF spectrum analyser that allows tracing absorption line profiles. Absorption lines of a number of minor constituents in the troposphere and stratosphere, such as O3, NH3, H2O, SO2, ClO, N2O, are in the 9 to 11 micrometer band and overlap with that of CO2 laser range. The experimental system has been made operational and trial observations taken. Current measurements are limited to ozone height profiles. Results are presented
- …