681 research outputs found

    Hidden Order in Crackling Noise during Peeling of an Adhesive Tape

    Full text link
    We address the long standing problem of recovering dynamical information from noisy acoustic emission signals arising from peeling of an adhesive tape subject to constant traction velocity. Using phase space reconstruction procedure we demonstrate the deterministic chaotic dynamics by establishing the existence of correlation dimension as also a positive Lyapunov exponent in a mid range of traction velocities. The results are explained on the basis of the model that also emphasizes the deterministic origin of acoustic emission by clarifying its connection to sticks-slip dynamics.Comment: 5 pages, 10 figure

    Correlation between stick-slip frictional sliding and charge transfer

    Full text link
    A decade ago, Budakian and Putterman (Phys. Rev. Lett., {\bf 85}, 1000 (2000)) ascribed friction to the formation of bonds arising from contact charging when a gold tip of a surface force apparatus was dragged on polymethylmethacrylate surface. We propose a stick-slip model that captures the observed correlation between stick-slip events and charge transfer, and the lack of dependence of the scale factor connecting the force jumps and charge transfer on normal load. Here, stick-slip dynamics arises as a competition between the visco-elastic and plastic deformation time scales and that due to the pull speed with contact charging playing a minor role. Our model provides an alternate basis for explaining most experimental results without ascribing friction to contact charging.Comment: 8 pages, 4 figures, To be appeared in Physical Review

    Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs

    Full text link
    The carrier dynamics of photoexcited electrons in the vicinity of the surface of (NH4)2S-passivated GaAs were studied via terahertz (THz) emission spectroscopy and optical-pump THz-probe spectroscopy. THz emission spectroscopy measurements, coupled with Monte Carlo simulations of THz emission, revealed that the surface electric field of GaAs reverses after passivation. The conductivity of photoexcited electrons was determined via optical-pump THz-probe spectroscopy, and was found to double after passivation. These experiments demonstrate that passivation significantly reduces the surface state density and surface recombination velocity of GaAs. Finally, we have demonstrated that passivation leads to an enhancement in the power radiated by photoconductive switch THz emitters, thereby showing the important influence of surface chemistry on the performance of ultrafast THz photonic devices.Comment: 4 pages, 3 figures, to appear in Applied Physics Letter

    Development of Thiobacillus ferrooxidans ATCC 19859 strains tolerant to copper and zinc

    Get PDF
    A study was carried out to develop strains of Thiobacillus ferrooxidans ATCC 19859 tolerant to higher levels of heavy metal ions. Strains of T. ferrooxidans capable of growing in Cu2+ (30 g/L) and Zn2+ (60 g/L) have been obtained. The ability of strains tolerant to either copper or zinc to grow in medium containing both the metals has been examined. The copper-tolerant strain (25 g/L) grows better in the medium containing both metals (Cu2+ 25 g/L and Zn2+ 40 g/L) compared to the zinc-tolerant strain (40 g/L)

    Atomic relocation processes in impurity-free disordered p-GaAs epilayers studied by deep level transient spectroscopy

    No full text
    We have used capacitance–voltage and deep level transient spectroscopy techniques to study the relocation of impurities, such as Zn and Cu, in impurity-free disordered (IFD) p-type GaAs. A four-fold increase in the doping concentration is observed after annealing at 925 °C. Two electrically active defects HA (EV+0.39 eV) and HB2 (EV+0.54 eV), which we have attributed to Cu- and Asi/AsGa-related levels, respectively, are observed in the disordered p-GaAs layers. The injection of galliumvacancies causes segregation of Zndopant atoms and Cu towards the surface of IFD samples. The atomic relocation process is critically assessed in terms of the application of IFD to the band gap engineering of doped GaAs-based heterostructures.Two of the authors ~P.N.K.D. and H.H.T.! acknowledge the financial support of the Australian Research Counci

    Temperature dependent photoluminescence in oxygen ion implanted and rapid thermally annealed ZnO/ZnMgO multiple quantum wells

    Get PDF
    The authors investigate the effect of oxygen implantation and rapid thermal annealing in ZnO∕ZnMgOmultiple quantum wells using photoluminescence. A blueshift in the photoluminescence is observed in the implanted samples. For a low implantation dose, a significant increase of activation energy and a slight increase of the photoluminescence efficiency are observed. This is attributed to the suppression of the point defect complexes and transformation between defect structures by implantation and subsequent rapid thermal annealing. A high dose of implantation leads to lattice damage and agglomeration of defects leading to large defect clusters, which result to an increase in nonradiative recombination.The authors gratefully acknowledge the Australian Research Council for financial support and Swinburne University of Technology for Strategic Initiative funding. One of the authors X.W. acknowledges partial financial support of the Chinese National Natural Science Foundation 10364004 and the Yunnan Natural Science Foundation 2003E0013M

    Controlling the properties of InGaAs quantum dots by selective-area epitaxy

    No full text
    Selective growth of InGaAsquantum dots on GaAs is reported. It is demonstrated that selective-area epitaxy can be used for in-plane bandgap energy control of quantum dots.Atomic force microscopy and cathodoluminescence are used for characterization of the selectively growndots. Our results show that the composition, size, and uniformity of dots are determined by the dimensions of the mask used for patterning the substrate. Properties of dots can be selectively tuned by varying the mask dimensions. A single-step growth of a thin InGaAsquantum well and InGaAsquantum dots on the same wafer is demonstrated. By using a single-step growth,dots luminescing at different wavelengths, in the range 1150–1230nm, in different parts of the same wafer are achieved.The Australian Research Council is gratefully acknowledged for the financial support

    Broad and potent cross clade neutralizing antibodies with multiple specificities in the plasma of HIV-1 subtype C infected individuals.

    Get PDF
    Broadly Cross clade Neutralizing (BCN) antibodies are recognized as potential therapeutic tools and leads for the design of a vaccine that can protect human beings against various clades of Human Immunodeficiency Virus (HIV). In the present study, we screened plasma of 88 HIV-1 infected ART naïve individuals for their neutralization potential using a standard panel of 18 pseudoviruses belonging to different subtypes and different levels of neutralization. We identified 12 samples with good breadth of neutralization (neutralized >90% of the viruses). Four of these samples neutralized even the difficult-to-neutralize tier-3 pseudoviruses with great potency (GMT > 600). Analysis of neutralization specificities indicated that four samples had antibodies with multiple epitope binding specificities, viz. CD4-binding site (CD4BS), glycans in the V1/V2 and V3 regions and membrane proximal external region (MPER). Our findings indicate the strong possibility of identifying highly potent bNAbs with known or novel specificities from HIV-1 subtype C infected individuals from India that can be exploited as therapeutic tools or lead molecules for the identification of potential epitopes for design of a protective HIV-1 vaccine
    corecore