806 research outputs found

    Atomic relocation processes in impurity-free disordered p-GaAs epilayers studied by deep level transient spectroscopy

    No full text
    We have used capacitance–voltage and deep level transient spectroscopy techniques to study the relocation of impurities, such as Zn and Cu, in impurity-free disordered (IFD) p-type GaAs. A four-fold increase in the doping concentration is observed after annealing at 925 °C. Two electrically active defects HA (EV+0.39 eV) and HB2 (EV+0.54 eV), which we have attributed to Cu- and Asi/AsGa-related levels, respectively, are observed in the disordered p-GaAs layers. The injection of galliumvacancies causes segregation of Zndopant atoms and Cu towards the surface of IFD samples. The atomic relocation process is critically assessed in terms of the application of IFD to the band gap engineering of doped GaAs-based heterostructures.Two of the authors ~P.N.K.D. and H.H.T.! acknowledge the financial support of the Australian Research Counci

    Temperature dependent photoluminescence in oxygen ion implanted and rapid thermally annealed ZnO/ZnMgO multiple quantum wells

    Get PDF
    The authors investigate the effect of oxygen implantation and rapid thermal annealing in ZnO∕ZnMgOmultiple quantum wells using photoluminescence. A blueshift in the photoluminescence is observed in the implanted samples. For a low implantation dose, a significant increase of activation energy and a slight increase of the photoluminescence efficiency are observed. This is attributed to the suppression of the point defect complexes and transformation between defect structures by implantation and subsequent rapid thermal annealing. A high dose of implantation leads to lattice damage and agglomeration of defects leading to large defect clusters, which result to an increase in nonradiative recombination.The authors gratefully acknowledge the Australian Research Council for financial support and Swinburne University of Technology for Strategic Initiative funding. One of the authors X.W. acknowledges partial financial support of the Chinese National Natural Science Foundation 10364004 and the Yunnan Natural Science Foundation 2003E0013M

    Controlling the properties of InGaAs quantum dots by selective-area epitaxy

    No full text
    Selective growth of InGaAsquantum dots on GaAs is reported. It is demonstrated that selective-area epitaxy can be used for in-plane bandgap energy control of quantum dots.Atomic force microscopy and cathodoluminescence are used for characterization of the selectively growndots. Our results show that the composition, size, and uniformity of dots are determined by the dimensions of the mask used for patterning the substrate. Properties of dots can be selectively tuned by varying the mask dimensions. A single-step growth of a thin InGaAsquantum well and InGaAsquantum dots on the same wafer is demonstrated. By using a single-step growth,dots luminescing at different wavelengths, in the range 1150–1230nm, in different parts of the same wafer are achieved.The Australian Research Council is gratefully acknowledged for the financial support

    First order polarization tensor approximation using multivariate polynomial interpolation method via least square minimization technique

    Get PDF
    This paper proposes a new numerical approach useful in dealing with nearly singular integrals, specifically, the integral of the first order polarization tensor (PT). Polarization tensor represents the integral equations in an asymptotic series, and it can also define the boundary value problem of a partial differential equation (PDE). Since PT has been widely used and implemented in many engineering areas, particularly electric and magnetic field areas, it is crucial to estimate the first order PT solutions accurately. In this regard, the computation of PT for different geometry types is basically from the quadratic interpolation and the multivariate polynomial fitting using the least square method. The numerical calculation of the integral of the singular integral operator, ∗ which is one of the primary integral processes before we obtained the solution of PT uses the multivariate polynomial fitting. This paper aims to provide an accurate numerical solution for first order PT for different geometry types, particularly sphere and ellipsoid geometry. The numerical results of the proposed method are shown together with the comparison of its analytical solutions. From the results obtained, the numerical solution of first order PT shows higher accuracy and higher convergence as the number of surface elements increases. The numerical and the analytical solution of first order PT for a sphere is discussed and represented in graphical form. The utilization of two different software types throughout this study is Netgen Mesh Generator and MATLAB to aid the numerical computation process. The simulation and the numerical examples verify the effectiveness and efficiency of the proposed method

    An ovine model of hyperdynamic endotoxemia and vital organ metabolism

    Get PDF
    BACKGROUND: Animal models of endotoxemia are frequently used to understand the pathophysiology of sepsis and test new therapies. However, important differences exist between commonly used experimental models of endotoxemia and clinical sepsis. Animal models of endotoxemia frequently produce hypodynamic shock in contrast to clinical hyperdynamic shock. This difference may exaggerate the importance of hypoperfusion as a causative factor in organ dysfunction. This study sought to develop an ovine model of hyperdynamic endotoxemia and assess if there is evidence of impaired oxidative metabolism in the vital organs. METHODS: Eight sheep had microdialysis catheters implanted into the brain, heart, liver, kidney and arterial circulation. Shock was induced with a 4hr escalating dose infusion of endotoxin. After 3hrs vasopressor support was initiated with noradrenaline and vasopressin. Animals were monitored for 12hrs after endotoxemia. Blood samples were recovered for haemoglobin, white blood cell count, creatinine and proinflammatory cytokines (IL-1Beta, IL-6 & IL-8). RESULTS: The endotoxin infusion was successful in producing distributive shock with the mean arterial pressure decreasing from 84.5 ± 12.8 mmHg to 49 ± 8.03 mmHg (p < 0.001). Cardiac index remained within the normal range decreasing from 3.33 ± 0.56 l/min/m to 2.89l ± 0.36 l/min/m (p = 0.0845). Lactate/pyruvate ratios were not significantly abnormal in the heart, brain, kidney or arterial circulation. Liver microdialysis samples demonstrated persistently high lactate/pyruvate ratios (mean 37.9 ± 3.3). CONCLUSIONS: An escalating dose endotoxin infusion was successful in producing hyperdynamic shock. There was evidence of impaired oxidative metabolism in the liver suggesting impaired splanchnic perfusion. This may be a modifiable factor in the progression to multiple organ dysfunction and death

    Using graded barriers to control the optical properties of ZnO/Zn0.7Mg0.3O quantum wells with an intrinsic internal electric field

    No full text
    Quantum wells with graded barriers are demonstrated as a means to control both the transition energy and electron-hole wave function overlap for quantum wells with an intrinsic internal electric field. In the case of c-axis grown ZnO/ZnMgO quantum wells, the graded barriers are produced by stepping the magnesium composition during the growth process. Four quantum wells with different structures are examined, where each well has similar transition energy, yet a wide range of wave function overlaps are observed. Photoluminescence and time resolved photoluminescence show good agreement with calculations.Australian Research Council is gratefully acknowledged for financial support. C.R.H. thanks Lastek for financial support

    Observation of coherent biexcitons in ZnO/ZnMgO multiple quantum wells at room temperature

    No full text
    We have studied ZnO∕ZnMgO multiple quantum wells by spectrally resolved transient four-wave mixing with both one- and two-color excitations. The presence of an extended signal at negative interpulse delays in the two-color experiment is attributed to the two-photon coherence resulting from the generation of biexcitons. This technique provides a means to observe a transient four-wave mixing from biexcitons in the absence of any other signal, and thereby provides the first clear evidence that biexcitons are present in narrow ZnO∕ZnMgOquantum wells at room temperature. Dephasing times of the order of 100fs for the biexcitons are measured.The authors gratefully acknowledge The Australian Research Council for financial support and Swinburne University of Technology for Strategic Initiative funding
    corecore