1,809 research outputs found

    Reconstruction of the primordial fluctuation spectrum from the five-year WMAP data by the cosmic inversion method with band-power decorrelation analysis

    Full text link
    The primordial curvature fluctuation spectrum is reconstructed by the cosmic inversion method using the five-year WMAP data of the cosmic microwave background temperature anisotropy. We apply the covariance matrix analysis and decompose the reconstructed spectrum into statistically independent band-powers. The statistically significant deviation from a simple power-law spectrum suggested by the analysis of the first-year data is not found in the five-year data except possibly at one point near the border of the wavenumber domain where accurate reconstruction is possible.Comment: 9page

    Nonlinearly Realized Extended Supergravity

    Full text link
    We provide nonlinear realization of supergravity with an arbitrary number of supersymmetries by means of coset construction. The number of gravitino degrees of freedom counts the number of supersymmetries, which will be possibly probed in future experiments. We also consider goldstino embedding in the construction to discuss the relation to nonlinear realization with rigid supersymmetries.Comment: 19 page

    Programming models for sensor networks: a survey

    Get PDF
    Sensor networks have a significant potential in diverse applications some of which are already beginning to be deployed in areas such as environmental monitoring. As the application logic becomes more complex, programming difficulties are becoming a barrier to adoption of these networks. The difficulty in programming sensor networks is not only due to their inherently distributed nature but also the need for mechanisms to address their harsh operating conditions such as unreliable communications, faulty nodes, and extremely constrained resources. Researchers have proposed different programming models to overcome these difficulties with the ultimate goal of making programming easy while making full use of available resources. In this article, we first explore the requirements for programming models for sensor networks. Then we present a taxonomy of the programming models, classified according to the level of abstractions they provide. We present an evaluation of various programming models for their responsiveness to the requirements. Our results point to promising efforts in the area and a discussion of the future directions of research in this area.

    Induction of specific tolerance by intrathymic injection of recipient muscle cells transfected with donor class I major histocompatibility complex.

    Get PDF
    Induction of tolerance to allogeneic MHC antigens has been a goal in the field of transplantation because it would reduce or eliminate the need for generalized immunosuppression. Although encouraging results have been obtained in experimental models by exposing recipient thymus to donor cells before transplantation, donor cells are not typically available at that time, and the donor antigens responsible for the effect are poorly defined. In the present study, thymic tolerance was demonstrated without using donor cells. Recipient thymus was injected before transplantation with autologous myoblasts and myotubes that were genetically modified to express allogeneic donor-type MHC class I antigen. Donor-specific unresponsiveness was induced to a completely MHC-disparate liver transplant and to a subsequent donor-type cardiac allograft, but not a third-party allograft. In vitro, recipient CTL demonstrated a 10-fold reduction in killing of donor cells, but not of third-party cells. Our results demonstrate: (1) that recipient muscle cells can be genetically engineered to induce donor-specific unresponsiveness when given intrathymically, and (2) transfected recipient cells expressing only donor MHC class I antigen can induce tolerance to a fully allogeneic donor

    Anisotropic uniaxial pressure response of the Mott insulator Ca2RuO4

    Get PDF
    We have investigated the in-plane uniaxial pressure effect on the antiferromagnetic Mott insulator Ca2RuO4 from resistivity and magnetization measurements. We succeeded in inducing the ferromagnetic metallic phase at lower critical pressure than by hydrostatic pressure, indicating that the flattening distortion of the RuO6 octahedra is more easily released under in-plane uniaxial pressure. We also found a striking in-plane anisotropy in the pressure responses of various magnetic phases: Although the magnetization increases monotonically with pressure diagonal to the orthorhombic principal axes, the magnetization exhibits peculiar dependence on pressure along the in-plane orthorhombic principal axes. This peculiar dependence can be explained by a qualitative difference between the uniaxial pressure effects along the orthorhombic a and b axes, as well as by the presence of twin domain structures.Comment: Accepted for publication in Phys. Rev.

    Band-power reconstruction of the primordial fluctuation spectrum by the maximum likelihood reconstruction method

    Full text link
    The primordial curvature fluctuation spectrum is reconstructed by the maximum likelihood reconstruction method using the five-year Wilkinson Microwave Anisotropy Probe data of the cosmic microwave background temperature anisotropy. We apply the covariance matrix analysis and decompose the reconstructed spectrum into statistically independent band-powers. The prominent peak off a simple power-law spectrum found in our previous analysis turn out to be a 3.3σ3.3\sigma deviation. From the statistics of primordial spectra reconstructed from mock observations, the probability that a primordial spectrum including such excess is realized in a power-law model is estimated to be about 2%.Comment: 9 page

    Mutational pattern and frequency of induced nucleotide changes in mouse ENU mutagenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the advent of sequence-based approaches in the mutagenesis studies, it is now possible to directly evaluate the genome-wide pattern of experimentally induced DNA sequence changes for a diverse array of organisms. To gain a more comprehensive understanding of the mutational bias inherent in mouse ENU mutagenesis, this study describes a detailed evaluation of the induced mutational pattern obtained from a sequence-based screen of ENU-mutagenized mice.</p> <p>Results</p> <p>Based on a large-scale screening data, we derive the sequence-based estimates of the nucleotide-specific pattern and frequency of ENU-induced base replacement mutation in the mouse germline, which are then combined with the pattern of codon usage in the mouse coding sequences to infer the spectrum of amino acid changes obtained by ENU mutagenesis. We detect a statistically significant difference between the mutational patterns in phenotype- versus sequence-based screens, which presumably reflects differential phenotypic effects caused by different amino acid replacements. We also demonstrate that the mutations exhibit strong strand asymmetry, and that this imbalance is generated by transcription, most likely as a by-product of transcription-coupled DNA repair in the germline.</p> <p>Conclusion</p> <p>The results clearly illustrate the biased nature of ENU-induced mutations. We expect that a precise understanding of the mutational pattern and frequency of induced nucleotide changes would be of practical importance when designing sequence-based screening strategies to generate mutant mouse strains harboring amino acid variants at specific loci. More generally, by enhancing the collection of experimentally induced mutations in unambiguously defined genomic regions, sequence-based mutagenesis studies will further illuminate the molecular basis of mutagenic and repair mechanisms that preferentially produce a certain class of mutational changes over others.</p
    • 

    corecore