76 research outputs found
Development of hazard analysis and critical control points (HACCP) procedures to control organic chemical hazards in the agricultural production of raw food commodities
Hazard Analysis by Critical Control Points (HACCP) is a systematic approach to the identification, assessment and control of hazards in the food chain. Effective HACCP requires the consideration of all possible hazards, i.e., chemical, microbiological and physical. However, current procedures focus primarily upon microbiological and physical hazards, and, to date, chemical aspects of HACCP have received relatively little attention. Consequently, this report discusses the application of HACCP to organic chemical contaminants and the particular problems that are likely to encounter within the agricultural sector. It also presents generic templates for the development of organic chemical contaminant HACCP procedures for selected raw food commodities, i.e., cereal crops, raw meats and milk
Detecting and quantifying the contribution made by aircraft emissions to ambient concentrations of nitrogen oxides in the vicinity of a large international airport
Plans to build a third runway at London Heathrow Airport (LHR) have been held back because of concerns that the development would lead to annual mean concentrations of nitrogen dioxide (NO2) in excess of EU Directives, which must be met by 2010. The dominant effect of other sources of NOX close to the airport, primarily from road traffic, makes it difficult to detect and quantify the contribution made by the airport to local NOX and NO2 concentrations. This work presents approaches that aim to detect and quantify the airport contribution to NOX at a network of seven measurement sites close to the airport. Two principal approaches are used. First, a graphical technique using bivariate polar plots that develops the idea of a pollution rose is used to help discriminate between different source types. The sampling uncertainties associated with the technique have been calculated through a randomised re-sampling approach. Second, the unique pattern of aircraft activity at LHR enables data filtering techniques to be used to statistically verify the presence of aircraft sources. It is shown that aircraft NOX sources can be detected to at least 2.7 km from the airport, despite that the airport contribution is very small at that distance. Using these approaches, estimates have been made of the airport contribution to long-term mean concentrations of NOX and NO2. At the airport boundary we estimate that approximately 28 % (34 μg m-3) of the annual mean NOX is due to airport operations. At background locations 2-3 km downwind of the airport we estimate that the upper limit of the airport contribution to be less than 15 % (< 10 μg m-3). This work also provides approaches that would help validate and refine dispersion modelling studies used for airport assessments
Evaluation of a FTIR Emission Measurement System for Legislated Emissions Using a SI Car
A series of chassis dynamometer test trials were
conducted to assess the performance of a Fourier
Transform Infra Red (FTIR) system developed for
on-road vehicle exhaust emissions measurements.
Trials used a EURO 1 emission compliant SI passenger
car which, alongside the FTIR, was instrumented to
allow the routine logging of engine speed, road speed,
throttle position, air-fuel ratio, air flow and fuel flow in
addition to engine, exhaust and catalyst temperatures.
The chassis dynamometer facility incorporated an
‘industry standard’ measurement system comprising
MEXA7400 gas analyzer and CVS bag sampling which
was the ‘benchmark’ for the evaluation of FTIR
legislated gas-phase emissions (CO, NOx, THC and
CO2) measurements.
Initial steady state measurements demonstrated strong
correlations for CO, NOx and THC (R2 of 0.99, 0.97
0.99, respectively) and a good correlation for CO2 (R2 =
0.92). Subsequent transient and total mass emissions
measurements from replicate samplings of four different
driving cycles (two standard cycles, FTP75 and NEDC,
and two novel cycles based on real-world data collected
in Leeds) also show good response of FTIR and
satisfied agreement between the FTIR and CVS bag
sampling measurements.
In general, the trial results demonstrate that the
on-board FTIR emission measurement system provides
reliable in-journey emissions data
Sensor-based Particulate Measurement (Some Tall Tales from the Trenches)
Current evidence indicates that a relatively small number of vehicles are responsible for the majority of excess in-use emissions, e.g. about 10% of the Diesel Particulate Filter (DPF) equipped vehicles are believed to contribute about 70% of excess particulate matter (PM) emissions. But conventional I/M measurements (snap-acceleration opacity) and other similar ‘stop-and-test’ procedures are not sensitive enough to measure the difference between a properly functioning and a moderately malfunctioning DPF system, and can even be cross-sensitive to the by-products of some modern emission control systems, e.g. NO2 from Selective Catalytic Reduction. As a result, one of the key elements of a more effective next-generation emissions ‘stop-and-test’ procedure for modern vehicles would be a new ‘SMOG Check’ system. Here, using provisional data for several recent and on-going studies, we propose a sensor-array strategy based on the 3DATx parSYNC as an alternative to simply replacing one metric (opacity) with another. We present data on the effectiveness of this approach, and describe options to address cross-sensitivity. We also consider the analytical compromises required to build an instrument suitable for use in a commercial garage at a price-point that will make it viable, as well as the extended diagnostic capabilities of a multi-dimensional description of vehicle particulate emissions
Real-world comparison of probe vehicle emissions and fuel consumption using diesel and 5 % biodiesel (B5) blend.
An instrumented EURO I Ford Mondeo was used to perform a real-world comparison of vehicle exhaust (carbon dioxide, carbon monoxide, hydrocarbons and oxides of nitrogen) emissions and fuel consumption for diesel and 5% biodiesel in diesel blend (B5) fuels. Data were collected on multiple replicates of three standardised on-road journeys: (1) A simple urban route; (2) A combined urban/inter-urban route; and, (3) An urban route subject to significant traffic management. At the total journey measurement level, data collected here indicate that replacing diesel with a B5 substitute could result in significant increases in both NOx emissions (8-13%) and fuel consumption (7-8%). However, statistical analysis of probe vehicle data demonstrated the limitations of comparisons based on such total journey measurements, i.e., methods analogous to those used in conventional dynamometer/drive cycle fuel comparison studies. Here, methods based on the comparison of speed/acceleration emissions and fuel consumption maps are presented. Significant variations across the speed/acceleration surface indicated that direct emission and fuel consumption impacts were highly dependent on the journey/drive cycle employed. The emission and fuel consumption maps were used both as descriptive tools to characterise impacts and predictive tools to estimate journey-specific emission and fuel consumption effects
Impact of Driving Cycles on Greenhouse Gas (GHG) Emissions, Global Warming Potential (GWP) and Fuel Economy for SI Car Real World Driving
The transport sector is one of the major contributors to greenhouse gas emissions. This study investigated three greenhouse gases emitted from road transport: CO2, N2O and CH4 emissions as a function of engine warm up and driving cycles. Five different urban driving cycles were developed and used including free flow driving and congested driving. An in-vehicle FTIR (Fourier Transform Inferred) emission measurement system was installed on a EURO2 emission compliant SI (Spark Ignition) car for emissions measurement at a rate of 0.5 HZ under real world urban driving conditions. This emission measurement system was calibrated on a standard CVS (Constant Volume Sampling) measurement system and showed excellent agreement on CO2 measurement with CVS results. The N2O and CH4 measurement was calibrated using calibration gas in lab. A MAX710 real time in-vehicle fuel consumption measurement system was installed in the test vehicle and real time fuel consumption was then obtained. The temperatures across the TWC (Three Way Catalyst) and engine out exhaust gas lambda were measured. The GHG (greenhouse gas) mass emissions and consequent GWP (Global Warming Potential) for different urban diving conditions were analyzed and presented. The results provided a better understanding of traffic related greenhouse gas emission profile in urban area and will contribute to the control of climate change
Recommended from our members
Updating outdated predictive accident models for modern rural roads [forthcoming]
Reliable predictive accident models (PAMs) are essential to design and maintain safe road networks however, ongoing changes in road and vehicle design coupled with road safety initiatives, mean that these models can quickly become dated. Unfortunately, because the fitting of sophisticated PAMs including a wide range of explanatory variables is not a trivial task, available models tend to be based on data collected many years ago and seem unlikely to give reliable estimates of current accidents. Large, expensive studies to produce new models are likely to be, at best, only a temporary solution. This paper thus seeks to develop a practical and efficient methodology to allow currently available PAMs to be updated to give unbiased estimates of accident frequencies at any point in time. Two principal issues are examined: the extent to which the temporal transferability of predictive accident models varies with model complexity; and the practicality and efficiency of two alternative updating strategies. The models used to illustrate these issues are the suites of models developed for rural dual and single carriageway roads in the UK. These are widely used in several software packages in spite of being based on data collected during the 1980s. It was found that increased model complexity by no means ensures better temporal transferability and that calibration of the models using a scale factor can be a practical alternative to fitting new models
The Non-Exhaust Particulate Emissions Impact of EURO VI to Battery Electric Bus Fleet Transitions
There is already strong evidence that non-exhaust emissions (NEEs) are a significant source of
transport-related particulates, and an expectation that this will increase as we transition from
13
conventional to heavier alternative technology vehicles. (1) Therefore, we need to ensure that our
existing commitment to zero (at tailpipe) emissions is complemented by an active effort to mitigate
any unintended consequences for NEEs. (2)
This work, led by FirstBus, and funded by the TRANSITION Clean Air Network funded by the Natural
Environment Research Council within the UKRI Clean Air Programme (3), uses the EURO VI-to-Battery
Electric Bus transition as a case study to explore options to: (a) improve inventorying information
available to fleet managers considering fleet upgrade options; and, (b) gather evidence on the
potential divergence between regulatory metrics, conventional emission factors, inventory model
predictions and the real-world outcomes as we migrate to what need to be significantly cleaner
technologies
Recommended from our members
Methodology for fitting and updating predictive accident models with trend [forthcoming]
Reliable predictive accident models (PAMs) have a variety of important uses in traffic safety research and practice. They are used to help identify sites in need of remedial treatment, in the design of transport schemes to assess safety implications, and to estimate the effectiveness of remedial treatments. The PAMs currently in use in the UK are now quite old; the data used in their development was gathered up to 30 years ago. Many changes have occurred over that period in road and vehicle design, in road safety campaigns and legislation, and the national accident rate has fallen substantially. It seems unlikely that these aging models can be relied upon to provide accurate and reliable predictions of accident frequencies on the roads today. This paper addresses a number of methodological issues that arise in seeking practical and efficient ways to update PAMs. Models for accidents on rural single carriageway roads have been chosen to illustrate these issues, including the choice of distributional assumption for overdispersion, the choice of goodness of fit measures, questions of independence between observations in different years, and between links on the same scheme, the estimation of trends in the models, the uncertainty of predictions, as well as considerations about the most efficient and convenient ways to fit the required models, given the considerable advances that have been seen in statistical computing software in recent years
Real-world assessment of vehicle air pollutant emissions subset by vehicle type, fuel and EURO class: New findings from the recent UK EDAR field campaigns, and implications for emissions restricted zones
This paper reports upon and analyses vehicle emissions measured by the Emissions Detecting and Reporting (EDAR) system, a Vehicle Emissions Remote Sensing System (VERSS) type device, used in five UK based field campaigns in 2016 and 2017. In total 94,940 measurements were made of 75,622 individual vehicles during the five campaigns. The measurements are subset into vehicle type (bus, car, HGV, minibus, motorcycle, other, plant, taxi, van, and unknown), fuel type for car (petrol and diesel), and EURO class, and particulate matter (PM), nitric oxide (NO) and nitrogen dioxide (NO2) are reported. In terms of recent EURO class emission trends, NO and NOx emissions decrease from EURO 5 to EURO 6 for nearly all vehicle categories. Interestingly, taxis show a marked increase in NO2 emissions from EURO 5 to EURO 6. Perhaps most concerningly is a marked increase in PM emissions from EURO 5 to EURO 6 for HGVs. Another noteworthy observation was that vans, buses and HGVs of unknown EURO class were often the dirtiest vehicles in their classes, suggesting that where counts of such vehicles are high, they will likely make a significant contribution to local emissions. Using Vehicle Specific Power (VSP) weighting we provide an indication of the magnitude of the on-site VERSS bias and also a closer estimate of the regulatory test/on-road emissions differences. Finally, a new ‘EURO Updating Potential’ (EUP) factor is introduced, to assess the effect of a range of air pollutant emissions restricted zones either currently in use or marked for future introduction. In particular, the effects of the London based Low Emission Zone (LEZ) and Ultra-Low Emissions Zone (ULEZ), and the proposed Birmingham based Clean Air Zone (CAZ) are estimated. With the current vehicle fleet, the impacts of the ULEZ and CAZ will be far more significant than the LEZ, which was introduced in 2008
- …