324 research outputs found
Diboson-Jets and the Search for Resonant Zh Production
New particles at the TeV-scale may have sizeable decay rates into boosted
Higgs bosons or other heavy scalars. Here, we investigate the possibility of
identifying such processes when the Higgs/scalar subsequently decays into a
pair of W bosons, constituting a highly distinctive "diboson-jet." These can
appear as a simple dilepton (plus MET) configuration, as a two-prong jet with
an embedded lepton, or as a four-prong jet. We study jet substructure methods
to discriminate these objects from their dominant backgrounds. We then
demonstrate the use of these techniques in the search for a heavy spin-one Z'
boson, such as may arise from strong dynamics or an extended gauge sector,
utilizing the decay chain Z' -> Zh -> Z(WW^(*)). We find that modes with
multiple boosted hadronic Zs and Ws tend to offer the best prospects for the
highest accessible masses. For 100/fb luminosity at the 14 TeV LHC, Z' decays
into a standard 125 GeV Higgs can be observed with 5-sigma significance for
masses of 1.5-2.5 TeV for a range of models. For a 200 GeV Higgs (requiring
nonstandard couplings, such as fermiophobic), the reach may improve to up to
2.5-3.0 TeV.Comment: 23 pages plus appendices, 9 figure
Direct Probing of Gap States and Their Passivation in Halide Perovskites by High-Sensitivity, Variable Energy Ultraviolet Photoelectron Spectroscopy
Direct detection of intrinsic defects in halide perovskites (HaPs) by standard methods utilizing optical excitation is quite challenging, due to the low density of defects in most samples of this family of materials (≤10^{15} cm^{–3} in polycrystalline thin films and ≤10^{11} cm^{–3} in single crystals, except melt-grown ones). While several electrical methods can detect defect densities 2 eV) HaPs. By measuring HaP layers on both hole- and electron-contact layers, as well as single crystals without contacts, we conclude that the observed deep defects are intrinsic to the Br-based HaP, and we propose a passivation route via the incorporation of a 2D-forming ligand into the precursor solution
Detection of the spotted wing drosophila, Drosophila suzukii, in continental sub-Saharan Africa
The spotted wing drosophila, Drosophila suzukii Matsumura, is an insect pest of soft-skinned fruit, native to Eastern Asia. Since 2008, a world-wide dispersal of D. suzukii is seen, characterized by the establishment of the pest in many Asian, American and European countries. While the potential for invasion of continental Africa by D. suzukii has been predicted, its presence has only been shown for Morocco in Northern Africa. Knowledge about a possible establishment in other parts of the continent is needed as a basis for pest management. In 2019, we carried out a first survey in three counties in Kenya to monitor for the presence of D. suzukii using traps baited with a blend of apple cider vinegar and red wine. A total of 389 D. suzukii flies were captured in a fruit farm at Nakuru county, with more female flies being trapped than males. We confirmed the morphological identification of D. suzukii using DNA barcoding. In 2020, we performed a follow-up survey at 14 locations in six counties to delimit the distribution of D. suzukii in the main berry growing zones in Kenya. The survey indicated that so far D. suzukii is restricted to Nakuru county where it was initially detected. This is the first study to provide empirical evidence of D. suzukii in continental sub-Saharan Africa, confirming that the pest is expanding its geographic range intercontinentally. Given the high dispersal potential of D. suzukii, a concerted effort to develop management strategies is a necessity for containment of the pest
Jet Dipolarity: Top Tagging with Color Flow
A new jet observable, dipolarity, is introduced that can distinguish whether
a pair of subjets arises from a color singlet source. This observable is
incorporated into the HEPTopTagger and is shown to improve discrimination
between top jets and QCD jets for moderate to high pT.Comment: 8 pages, 6 figures (updated to JHEP version
Hitting sbottom in natural SUSY
We compare the experimental prospects of direct stop and sbottom pair
production searches at the LHC. Such searches for stops are of great interest
as they directly probe for states that are motivated by the SUSY solution to
the hierarchy problem of the Higgs mass parameter - leading to a "Natural" SUSY
spectrum. Noting that sbottom searches are less experimentally challenging and
scale up in reach directly with the improvement on b-tagging algorithms, we
discuss the interplay of small TeV scale custodial symmetry violation with
sbottom direct pair production searches as a path to obtaining strong sub-TeV
constraints on stops in a natural SUSY scenario. We argue that if a weak scale
natural SUSY spectrum does not exist within the reach of LHC, then hopes for
such a spectrum for large regions of parameter space should sbottom out.
Conversely, the same arguments make clear that a discovery of such a spectrum
is likely to proceed in a sbottom up manner.Comment: 18 pages, 8 figures,v2 refs added, JHEP versio
Structure of Fat Jets at the Tevatron and Beyond
Boosted resonances is a highly probable and enthusiastic scenario in any
process probing the electroweak scale. Such objects when decaying into jets can
easily blend with the cornucopia of jets from hard relative light QCD states.
We review jet observables and algorithms that can contribute to the
identification of highly boosted heavy jets and the possible searches that can
make use of such substructure information. We also review previous studies by
CDF on boosted jets and its measurements on specific jet shapes.Comment: invited review for a special "Top and flavour physics in the LHC era"
issue of The European Physical Journal C, we invite comments regarding
contents of the review; v2 added references and institutional preprint
number
Probing natural SUSY from stop pair production at the LHC
We consider the natural supersymmetry scenario in the framework of the
R-parity conserving minimal supersymmetric standard model (called natural MSSM)
and examine the observability of stop pair production at the LHC. We first scan
the parameters of this scenario under various experimental constraints,
including the SM-like Higgs boson mass, the indirect limits from precision
electroweak data and B-decays. Then in the allowed parameter space we study the
stop pair production at the LHC followed by the stop decay into a top quark
plus a lightest neutralino or into a bottom quark plus a chargino. From
detailed Monte Carlo simulations of the signals and backgrounds, we find the
two decay modes are complementary to each other in probing the stop pair
production, and the LHC with TeV and 100 luminosity is
capable of discovering the stop predicted in natural MSSM up to 450 GeV. If no
excess events were observed at the LHC, the 95% C.L. exclusion limits of the
stop masses can reach around 537 GeV.Comment: 19 pages, 10 figures, version accepted by JHE
An Assessment of the Use of Chimpanzees in Hepatitis C Research Past, Present and Future: 2. Alternative Replacement Methods
The use of chimpanzees in hepatitis C virus (HCV) research was examined in the report associated with this paper (1: Validity of the Chimpanzee Model), in which it was concluded that claims of past necessity of chimpanzee use were exaggerated, and that claims of current and future indispensability were unjustifiable. Furthermore, given the serious scientific and ethical issues surrounding chimpanzee experimentation, it was proposed that it must now be considered redundant — particularly in light of the demonstrable contribution of alternative methods to past and current scientific progress, and the future promise that these methods hold. This paper builds on this evidence, by examining the development of alternative approaches to the investigation of HCV, and by reviewing examples of how these methods have contributed, and are continuing to contribute substantially, to progress in this field. It augments the argument against chimpanzee use by demonstrating the comprehensive nature of these methods and the valuable data they deliver. The entire life-cycle of HCV can now be investigated in a human (and much more relevant) context, without recourse to chimpanzee use. This also includes the testing of new therapies and vaccines. Consequently, there is no sound argument against the changes in public policy that propose a move away from chimpanzee use in US laboratories
Analytic philosophy for biomedical research: the imperative of applying yesterday's timeless messages to today's impasses
The mantra that "the best way to predict the future is to invent it" (attributed to the computer scientist Alan Kay) exemplifies some of the expectations from the technical and innovative sides of biomedical research at present. However, for technical advancements to make real impacts both on patient health and genuine scientific understanding, quite a number of lingering challenges facing the entire spectrum from protein biology all the way to randomized controlled trials should start to be overcome. The proposal in this chapter is that philosophy is essential in this process. By reviewing select examples from the history of science and philosophy, disciplines which were indistinguishable until the mid-nineteenth century, I argue that progress toward the many impasses in biomedicine can be achieved by emphasizing theoretical work (in the true sense of the word 'theory') as a vital foundation for experimental biology. Furthermore, a philosophical biology program that could provide a framework for theoretical investigations is outlined
- …