197,105 research outputs found

    Solution scheme for time dependent hydrodynamic plasma flow along a magnetic field line

    Get PDF
    Mathematical model for solving hydrodynamic flow equations in nonhomogenous magnetic field for plasma flow along field line in presence of gravitational fiel

    Exposure of a tendon extracellular matrix to synovial fluid triggers endogenous and engrafted cell death: A mechanism for failed healing of intrathecal tendon injuries

    Get PDF
    Aim: The purpose of this study was to investigate the effect of normal synovial fluid (SF) on exposed endogenous tendon-derived cells (TDC) and engrafted mesenchymal stem cells (MSCs) within the tendon extracellular matrix. Methods: Explants from equine superficial digital flexor (extra-synovial) and deep digital flexor tendons (DDFT) from the compressed, intra-synovial and the tensile, extra-synovial regions were cultured in allogeneic or autologous SF-media. Human hamstring explants were cultured in allogeneic SF. Explant viability was assessed by staining. Proliferation of equine monolayer MSCs and TDCs in SF-media and co-culture with DDFT explants was determined by alamarblue®. Non-viable Native Tendon matrices (NNTs) were re-populated with MSCs or TDCs and cultured in SF-media. Immunohistochemical staining of tendon sections for the apoptotic proteins caspase-3, -8 and -9 was performed. Results: Contact with autologous or allogeneic SF resulted in rapid death of resident tenocytes in equine and human tendon. SF did not affect the viability of equine epitenon cells, or of MSCs and TDCs in monolayer or indirect explant co-culture. MSCs and TDCs, engrafted into NNTs, died when cultured in SF. Caspase-3, -8 and -9 expression was greatest in SDFT explants exposed to allogeneic SF. Conclusions: The efficacy of cells administered intra-synovially for tendon lesion repair is likely to be limited, since once incorporated into the matrix, cells become vulnerable to the adverse effects of SF. These observations could account for the poor success rate of intra-synovial tendon healing following damage to the epitenon and contact with SF, common with most soft tissue intra-synovial pathologies

    A theory of solar type 3 radio bursts

    Get PDF
    Energetic electrons propagating through the interplanetary medium are shown to excite the one dimensional oscillating two stream instability (OTSI). The OTSI is in turn stabilized by anomalous resistivity which completes the transfer of long wavelength Langmuir waves to short wavelengths, out of resonance with the electrons. The theory explains the small energy losses suffered by the electrons in propagating to 1 AU, the predominance of second harmonic radiation, and the observed correlation between radio and electron fluxes

    Nonlinear stability of solar type 3 radio bursts. 2: Application to observations near 1 AU

    Get PDF
    A set of rate equations including strong turbulence effects and anomalous resitivity are solved using parmeters which model several solar type 3 bursts. Exciter distributions observed at 1 AU are excitation of the linear bump-in-tail instability, amplifying Langmuir waves above the threshold for the oscillating two stream instability (OTSI). The OTSI, and the attendant anomalous resistivity produce a rapid spectral transfer of Langmuir waves to short wavelengths, out of resonance with the electron exciter. Further energy loss of the beam is thus precluded. The various parameters needed to model the bursts are extrapolated inside 1 AU with similar results. Again, the OTSI is excited and decouples the electron beam from the Langmuir radiation. Reabsorption of the Langmuir waves by the beam is shown to be unimportant in all cases, even at 0.1 AU. The theory provides a natural explanation for the observed realationship between radio flux, and the electron flux

    Nonlinear stability of solar type 3 radio bursts. 1: Theory

    Get PDF
    A theory of the excitation of solar type 3 bursts is presented. Electrons initially unstable to the linear bump-in-tail instability are shown to rapidly amplify Langmuir waves to energy densities characteristic of strong turbulence. The three-dimensional equations which describe the strong coupling (wave-wave) interactions are derived. For parameters characteristic of the interplanetary medium the equations reduce to one dimension. In this case, the oscillating two stream instability (OTSI) is the dominant nonlinear instability, and is stablized through the production of nonlinear ion density fluctuations that efficiently scatter Langmuir waves out of resonance with the electron beam. An analytical model of the electron distribution function is also developed which is used to estimate the total energy losses suffered by the electron beam as it propagates from the solar corona to 1 A.U. and beyond

    Competition and cooperation in one-dimensional stepping stone models

    Get PDF
    Cooperative mutualism is a major force driving evolution and sustaining ecosystems. Although the importance of spatial degrees of freedom and number fluctuations is well-known, their effects on mutualism are not fully understood. With range expansions of microbes in mind, we show that, even when mutualism confers a distinct selective advantage, it persists only in populations with high density and frequent migrations. When these parameters are reduced, mutualism is generically lost via a directed percolation process, with a phase diagram strongly influenced by an exceptional DP2 transition.Comment: 8 pages, 4 figure

    Stabilization of electron streams in type 3 solar radio bursts

    Get PDF
    It is shown that the electron streams that give rise to Type 3 solar radio bursts are stable and will not be decelerated while propagating out of the solar corona. The stabilization mechanism depends on the parametric oscillating two stream instability. Radiation is produced near the fundamental and second harmonic of the local electron plasma frequency. Estimates of the emission at the second harmonic indicate that the wave spectra created by the oscillating two stream instability can account for the observed intensities of Type 3 bursts

    Rate constants and Arrhenius parameters for the reactions of OH radicals and Cl atoms with CF3CH2OCHF2, CF3CHClOCHF2 and CF3CH2OCClF2, using the discharge-flow/resonance fluorescence method

    Get PDF
    Rate constants have been determined for the reactions of OH radicals and Cl atoms with the three partially halogenated methyl-ethyl ethers, CF3_3CH2_2OCHF2_2, CF3_3CHClOCHF2_2 and CF3_3CH2_2OCClF2_2, using discharge-flow techniques to generate the OH radicals and the Cl atoms and resonance fluorescence to observe changes in their relative concentrations in the presence of added ether. For each combination of radical and ether, experiments were carried out at three temperatures between 292 and 410 K, yielding the following Arrhenius expressions for the rate constants within this range of temperature: OH + CF3_3CH2_2OCHF2_2: kk = (2.0±\pm0.8) ×\times 10−11^{-11} exp( – 2110 ±\pm 150 K / T) cm3^3 molecule−1^{-1} s−1^{-1} OH + CF3_3CHClOCHF2_2: kk = (4.5 ±\pm 1.3) ×\times 10−13^{-13} exp( – 940 ±\pm 100 K / T) cm3^3 molecule−1^{-1} s−1^{-1} OH + CF3_3CH2_2OCClF2_2: kk = (1.6 ±\pm 0.6) ×\times 10−12^{-12} exp( – 1100 ±\pm 125 K / T) cm3^3 molecule−1^{-1} s−1^{-1} Cl + CF3_3CH2_2OCHF2_2: kk = (6.1 ±\pm 1.4) ×\times 10−12^{-12} exp( – 1830 ±\pm 90 K / T) cm3^3 molecule−1^{-1} s−1^{-1} Cl + CF3_3CHClOCHF2_2: kk = (7.8 ±\pm 2.6) ×\times 10−11^{-11} exp( – 2980 ±\pm 130 K / T) cm3^3 molecule−1^{-1} s−1^{-1} Cl + CF3_3CH2_2OCClF2_2: kk = (2.2 ±\pm 0.2) ×\times 10−11^{-11} exp( – 2700 ±\pm 40 K / T) cm3^3 molecule−1^{-1} s−1^{-1} The results are compared with those obtained previously for the same and related reactions of OH radicals and Cl atoms, and the atmospheric implications of the results are considered briefly
    • …
    corecore