3,141 research outputs found

    Coloring random graphs

    Full text link
    We study the graph coloring problem over random graphs of finite average connectivity cc. Given a number qq of available colors, we find that graphs with low connectivity admit almost always a proper coloring whereas graphs with high connectivity are uncolorable. Depending on qq, we find the precise value of the critical average connectivity cqc_q. Moreover, we show that below cqc_q there exist a clustering phase c∈[cd,cq]c\in [c_d,c_q] in which ground states spontaneously divide into an exponential number of clusters and where the proliferation of metastable states is responsible for the onset of complexity in local search algorithms.Comment: 4 pages, 1 figure, version to app. in PR

    Cluster Dynamics for Randomly Frustrated Systems with Finite Connectivity

    Full text link
    In simulations of some infinite range spin glass systems with finite connectivity, it is found that for any resonable computational time, the saturatedenergy per spin that is achieved by a cluster algorithm is lowered in comparison to that achieved by Metropolis dynamics.The gap between the average energies obtained from these two dynamics is robust with respect to variations of the annealing schedule. For some probability distribution of the interactions the ground state energy is calculated analytically within the replica symmetry assumptionand is found to be saturated by a cluster algorithm.Comment: Revtex, 4 pages with 3 figure

    Mean Field Behavior of Cluster Dynamics

    Full text link
    The dynamic behavior of cluster algorithms is analyzed in the classical mean field limit. Rigorous analytical results below TcT_c establish that the dynamic exponent has the value zsw=1z_{sw}=1 for the Swendsen-Wang algorithm and zuw=0z_{uw}=0 for the Wolff algorithm. An efficient Monte Carlo implementation is introduced, adapted for using these algorithms for fully connected graphs. Extensive simulations both above and below TcT_c demonstrate scaling and evaluate the finite-size scaling function by means of a rather impressive collapse of the data.Comment: Revtex, 9 pages with 7 figure

    The most creative organization in the world? The BBC, 'creativity' and managerial style

    Get PDF
    The managerial styles of two BBC directors-general, John Birt and Greg Dyke, have often been contrasted but not so far analysed from the perspective of their different views of 'creative management'. This article first addresses the orthodox reading of 'Birtism'; second, it locates Dyke's 'creative' turn in the wider context of fashionable neo-management theory and UK government creative industries policy; third, it details Dyke's drive to change the BBC's culture; and finally, it concludes with some reflections on the uncertainties inherent in managing a creative organisation

    Partitioning and modularity of graphs with arbitrary degree distribution

    Full text link
    We solve the graph bi-partitioning problem in dense graphs with arbitrary degree distribution using the replica method. We find the cut-size to scale universally with . In contrast, earlier results studying the problem in graphs with a Poissonian degree distribution had found a scaling with ^1/2 [Fu and Anderson, J. Phys. A: Math. Gen. 19, 1986]. The new results also generalize to the problem of q-partitioning. They can be used to find the expected modularity Q [Newman and Grivan, Phys. Rev. E, 69, 2004] of random graphs and allow for the assessment of statistical significance of the output of community detection algorithms.Comment: Revised version including new plots and improved discussion of some mathematical detail

    Polynomial iterative algorithms for coloring and analyzing random graphs

    Get PDF
    We study the graph coloring problem over random graphs of finite average connectivity cc. Given a number qq of available colors, we find that graphs with low connectivity admit almost always a proper coloring whereas graphs with high connectivity are uncolorable. Depending on qq, we find the precise value of the critical average connectivity cqc_q. Moreover, we show that below cqc_q there exist a clustering phase c∈[cd,cq]c\in [c_d,c_q] in which ground states spontaneously divide into an exponential number of clusters. Furthermore, we extended our considerations to the case of single instances showing consistent results. This lead us to propose a new algorithm able to color in polynomial time random graphs in the hard but colorable region, i.e when c∈[cd,cq]c\in [c_d,c_q].Comment: 23 pages, 10 eps figure

    Generalised Shastry-Sutherland Models in three and higher dimensions

    Full text link
    We construct Heisenberg anti-ferromagnetic models in arbitrary dimensions that have isotropic valence bond crystals (VBC) as their exact ground states. The d=2 model is the Shastry-Sutherland model. In the 3-d case we show that it is possible to have a lattice structure, analogous to that of SrCu_2(BO_3)_2, where the stronger bonds are associated with shorter bond lengths. A dimer mean field theory becomes exact at d -> infinity and a systematic 1/d expansion can be developed about it. We study the Neel-VBC transition at large d and find that the transition is first order in even but second order in odd dimensions.Comment: Published version; slightly expande

    Typical Performance of Gallager-type Error-Correcting Codes

    Get PDF
    The performance of Gallager's error-correcting code is investigated via methods of statistical physics. In this approach, the transmitted codeword comprises products of the original message bits selected by two randomly-constructed sparse matrices; the number of non-zero row/column elements in these matrices constitutes a family of codes. We show that Shannon's channel capacity is saturated for many of the codes while slightly lower performance is obtained for others which may be of higher practical relevance. Decoding aspects are considered by employing the TAP approach which is identical to the commonly used belief-propagation-based decoding.Comment: 6 pages, latex, 1 figur

    The Statistical Physics of Regular Low-Density Parity-Check Error-Correcting Codes

    Full text link
    A variation of Gallager error-correcting codes is investigated using statistical mechanics. In codes of this type, a given message is encoded into a codeword which comprises Boolean sums of message bits selected by two randomly constructed sparse matrices. The similarity of these codes to Ising spin systems with random interaction makes it possible to assess their typical performance by analytical methods developed in the study of disordered systems. The typical case solutions obtained via the replica method are consistent with those obtained in simulations using belief propagation (BP) decoding. We discuss the practical implications of the results obtained and suggest a computationally efficient construction for one of the more practical configurations.Comment: 35 pages, 4 figure
    • 

    corecore