174 research outputs found

    QuickCough: An instrumentational proximal airway clearance technique (ACT) for select patients with Neuromuscular Disease (NMD)

    Get PDF
    Patients with neuromuscular disease (NMD) requiring tracheostomy and mechanical ventilation secondary to respiratory failure encounter increased difficulty in removing pulmonary secretions from the airways. To combat issues associated with current treatment modalities for insufficient cough efficacy (cost, poor mobility, discomfort, lack of evidence), we have developed an instrumentational proximal airway clearance technique (ACT) which augments a manual proximal ACT developed by a client with NMD. QuickCough is a 3D-printed PLA attachment to the tracheostomy apparatus which has demonstrated its ability to facilitate pressure changes necessary to increase patient’s peak cough flow (PCF) by providing a stronger exsufflation for the patient. QuickCough meets client needs by providing a machine-washable, inexpensive method of facilitating secretion expulsion without the use of bulky equipment in-transit. This novel instrumentational augmentation of a manual ACT was designed using the engineering design process discussed in The University of Akron’s biomedical engineering design course 4800:470. Future work ought to focus on development of an automated procedure to allow application of QuickCough in cases of global paralysis or insufficient home-care

    Measurement of the neutron ÎČ-asymmetry parameter A_0 with ultracold neutrons

    Get PDF
    We present a detailed report of a measurement of the neutron ÎČ-asymmetry parameter A_0, the parity-violating angular correlation between the neutron spin and the decay electron momentum, performed with polarized ultracold neutrons (UCN). UCN were extracted from a pulsed spallation solid deuterium source and polarized via transport through a 7-T magnetic field. The polarized UCN were then transported through an adiabatic-fast-passage spin-flipper field region, prior to storage in a cylindrical decay volume situated within a 1-T 2×2π solenoidal spectrometer. The asymmetry was extracted from measurements of the decay electrons in multiwire proportional chamber and plastic scintillator detector packages located on both ends of the spectrometer. From an analysis of data acquired during runs in 2008 and 2009, we report A_0=−0.11966±0.00089_(−0.00140)^(+0.00123), from which we extract a value for the ratio of the weak axial-vector and vector coupling constants of the nucleon, λ=g_A/g_V=−1.27590±0.00239_(−0.00377)^(+0.00331). Complete details of the analysis are presented

    Search for the Neutron Decay n→\rightarrow X+γ\gamma where X is a dark matter particle

    Get PDF
    In a recent paper submitted to Physical Review Letters, Fornal and Grinstein have suggested that the discrepancy between two different methods of neutron lifetime measurements, the beam and bottle methods can be explained by a previously unobserved dark matter decay mode, n→\rightarrow X+γ\gamma where X is a dark matter particle. We have performed a search for this decay mode over the allowed range of energies of the monoenergetic gamma ray for X to be a dark matter particle. We exclude the possibility of a sufficiently strong branch to explain the lifetime discrepancy with greater than 4 sigma confidence.Comment: 6 pages 3 figure

    Evidence for Strange Quark Contributions to the Nucleon's Form Factors at Q2Q^2 = 0.108 (GeV/c)2^2

    Full text link
    We report on a measurement of the parity violating asymmetry in the elastic scattering of polarized electrons off unpolarized protons with the A4 apparatus at MAMI in Mainz at a four momentum transfer value of Q2Q^2 = \Qsquare (GeV/c)2^2 and at a forward electron scattering angle of 30∘<Ξe<40∘^\circ < \theta_e < 40^\circ. The measured asymmetry is ALR(e⃗p)A_{LR}(\vec{e}p) = (\Aphys ±\pm \Deltastatstat_{stat} ±\pm \Deltasystsyst_{syst}) ×\times 10−6^{-6}. The expectation from the Standard Model assuming no strangeness contribution to the vector current is A0_0 = (\Azero ±\pm \DeltaAzero) ×\times 10−6^{-6}. We have improved the statistical accuracy by a factor of 3 as compared to our previous measurements at a higher Q2Q^2. We have extracted the strangeness contribution to the electromagnetic form factors from our data to be GEsG_E^s + \FakGMs GMsG_M^s = \GEsGMs ±\pm \DeltaGEsGMs at Q2Q^2 = \Qsquare (GeV/c)2^2. As in our previous measurement at higher momentum transfer for GEsG_E^s + 0.230 GMsG_M^s, we again find the value for GEsG_E^s + \FakGMs GMsG_M^s to be positive, this time at an improved significance level of 2 σ\sigma.Comment: 4 pages, 3 figure

    The Clinical Utility of the Adolescent and Young Adult Psycho-Oncology Screening Tool (AYA-POST): Perspectives of AYA Cancer Patients and Healthcare Professionals

    Get PDF
    Objective: Routine psychosocial screening and assessment of people diagnosed with cancer are crucial to the timely detection of distress and provision of tailored supportive care; however, appropriate screening tools have been lacking for adolescents and young adults (AYAs), who have unique needs and experiences. One exception is the recently validated AYA Psycho-Oncology Screening Tool (AYA-POST) for use with young people aged 15–29 years, which comprises a distress thermometer and age-specific needs assessment. This study investigates the clinical utility of this measure, as well as the subsequent service responsiveness within the Australian Youth Cancer Services. Method: In total, 118 AYAs and 29 healthcare professionals: (HCPs) completed surveys about the clinical utility of the AYA-POST; a subset of 30 AYAs completed a 3-month follow-up survey assessing service responsiveness. Descriptive statistics (frequencies/means) were computed for all items, with chi-square analyses used to explore whether perceived clinical utility varied with AYA age, AYA sex, HCP discipline or HCP length of time using the AYA-POST. Results: Participants’ responses demonstrate high levels of satisfaction with the tool, evidencing its appropriateness, practicability and acceptability. Moreover, the AYA-POST was reported to facilitate communication about psychosocial needs and prompt referrals, indicating good service responsiveness. Ratings of clinical utility did not differ significantly between AYA and HCP groups.Conclusion: This study demonstrates that the AYA-POST is an appropriate tool in the psychosocial screening of AYAs with cancer, facilitating the identification of distress and unique concerns in this population and valuable in triaging and tailoring care for young cancer patients.Pandora Patterson, Fiona E. J. McDonald, Kimberley R. Allison, Helen Bibby, Michael Osborn, Karen Matthews, Ursula M. Sansom-Daly, Kate Thompson, Meg Plaster, and Antoinette Anazod

    Measurement of Strange Quark Contributions to the Nucleon's Form Factors at Q^2=0.230 (GeV/c)^2

    Get PDF
    We report on a measurement of the parity-violating asymmetry in the scattering of longitudinally polarized electrons on unpolarized protons at a Q2Q^2 of 0.230 (GeV/c)^2 and a scattering angle of \theta_e = 30^o - 40^o. Using a large acceptance fast PbF_2 calorimeter with a solid angle of \Delta\Omega = 0.62 sr the A4 experiment is the first parity violation experiment to count individual scattering events. The measured asymmetry is A_{phys} =(-5.44 +- 0.54_{stat} +- 0.27_{\rm sys}) 10^{-6}. The Standard Model expectation assuming no strangeness contributions to the vector form factors is A0=(−6.30+−0.43)10−6A_0=(-6.30 +- 0.43) 10^{-6}. The difference is a direct measurement of the strangeness contribution to the vector form factors of the proton. The extracted value is G^s_E + 0.225 G^s_M = 0.039 +- 0.034 or F^s_1 + 0.130 F^s_2 = 0.032 +- 0.028.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Letters on Dec 11, 200

    A boron-coated CCD camera for direct detection of Ultracold Neutrons (UCN)

    Full text link
    A new boron-coated CCD camera is described for direct detection of ultracold neutrons (UCN) through the capture reactions 10^{10}B (n,α\alpha0γ\gamma)7^7Li (6%) and 10^{10}B(n,α\alpha1γ\gamma)7^7Li (94%). The experiments, which extend earlier works using a boron-coated ZnS:Ag scintillator, are based on direct detections of the neutron-capture byproducts in silicon. The high position resolution, energy resolution and particle ID performance of a scientific CCD allows for observation and identification of all the byproducts α\alpha, 7^7Li and γ\gamma (electron recoils). A signal-to-noise improvement on the order of 104^4 over the indirect method has been achieved. Sub-pixel position resolution of a few microns is demonstrated. The technology can also be used to build UCN detectors with an area on the order of 1 m2^2. The combination of micrometer scale spatial resolution, few electrons ionization thresholds and large area paves the way to new research avenues including quantum physics of UCN and high-resolution neutron imaging and spectroscopy.Comment: 10 pages, 8 figure
    • 

    corecore