23 research outputs found

    Drops impacting inclined fibers

    No full text
    International audienceMats of fibers are often used to capture liquid drops, such as in filters or in fog's nets. It is desired to optimize the efficiency of capture, in particular in the limit of drops larger than the fibers, for which filters remain highly permeable. Here we show that the efficiency of capture is dramatically increased by tilting the fibers: then, the velocity V below which a drop is fully captured is made much larger; moreover, the tilt maximizes the liquid volume left on the fiber when the impact velocity exceeds V

    Sliding droplets of Xanthan solutions: A joint experimental and numerical study

    No full text
    We have investigated the sliding of droplets made of solutions of Xanthan, a stiff rodlike polysaccharide exhibiting a non-Newtonian behavior, notably characterized by a shear thinning viscosity accompanied by the emergence of normal stress difference as the polymer concentration is increased. These experimental results are quantitatively compared with those of Newtonian fluids (water). The impact of the non-Newtonian behavior on the sliding process was shown through the relation between the average dimensionless velocity (i.e. the capillary number) and the dimensionless volume forces (i.e. the Bond number). To this aim, it is needed to define operative strategies to compute the capillary number for the shear thinning fluids and compare with the corresponding Newtonian case. The resulting capillary number for the Xanthan solutions scales linearly with the Bond number at small inclinations, as well known for Newtonian fluids, while it shows a plateau as the Bond number is increased. Experimental data were complemented with lattice Boltzmann numerical simulations of sliding droplets, aimed to disentangle the specific contribution of shear thinning and elastic effects on the sliding behavior. In particular the deviation from the linear (Newtonian) trend is more likely attributed to the emergence of normal stresses inside the non-Newtonian droplet
    corecore