7 research outputs found

    Feed Intake and Nutrient Digestibility, Rumen Fermentation Profiles, Milk Yield and Compositions of Lactating Dairy Cows Supplemented by Flemingia macrophylla Pellet

    Get PDF
    Feed intake and nutrient digestibility, rumen fermentation profiles, milk yield and compositions of lactating dairy cows fed with Flemingia macrophylla pellet (FMP) were evaluated. Four crossbred dairy cows in early lactation were randomly allocated into a 2Ă—2 factorial arrangement in a 4Ă—4 Latin square design (LSD). The first factor was protein level of concentrate mixtures consisted of two levels, i.e., 14% and 16%. The second factor was supplementation levels of FMP consisted of two levels, i.e., 0 and 150 g/cow/d. There were no interactions between the protein level of concentrate and FMP supplementation on feed intake and digestibility, rumen fermentation profiles, milk yield and composition of lactating dairy cows. The findings revealed that both factors significantly impacted feed intakes. They also significantly increased the digestibility of CP and neutral detergent fiber (NDF). Ruminal ammonia nitrogen and propionate (C3) concentrations were improved (p<0.05), while rumen acetate (C2), the ratio of C2:C3, estimated methane (CH4) production, and protozoal counts were subsequently reduced (p<0.05). Crude protein level and FMP supplementation additionally improved nitrogen absorption and utilization, as well as microbial nitrogen synthesis. Milk production was significantly increased by the FMP feeding. In conclusion, a concentrated mixture with 16% CP along with supplementation of FMP at a dose of 150 g/cow/d could significantly increase rumen fermentation end-products, microbial protein synthesis, mitigated rumen CH4 production, and milk production in lactating dairy cows fed with rice straw

    Improvement of Nutritive Value and Ruminal Fermentation of Silage by Molasses and Urea Supplementation

    No full text
    Leucaena silage was supplemented with different levels of molasses and urea to study its nutritive value and in vitro rumen fermentation efficiency. The ensiling study was randomly assigned according to a 3Ă—3 factorial arrangement in which the first factor was molasses (M) supplement at 0%, 1%, and 2% of crop dry matter (DM) and the second was urea (U) supplement as 0%, 0.5%, and 1% of the crop DM, respectively. After 28 days of ensiling, the silage samples were collected and analyzed for chemical composition. All the nine Leucaena silages were kept for study of rumen fermentation efficiency using in vitro gas production techniques. The present result shows that supplementation of U or M did not affect DM, organic matter, neutral detergent fiber, and acid detergent fiber content in the silage. However, increasing level of U supplementation increased crude protein content while M level did not show any effect. Moreover, the combination of U and M supplement decreased the content of mimosine concentration especially with M2U1 (molasses 2% and urea 1%) silage. The result of the in vitro study shows that gas production kinetics, cumulation gas at 96 h and in vitro true digestibility increased with the increasing level of U and M supplementation especially in the combination treatments. Supplementation of M and U resulted in increasing propionic acid and total volatile fatty acid whereas, acetic acid, butyric acid concentrations and methane production were not changed. In addition, increasing U level supplementation increased NH3-N concentration. Result from real-time polymerase chain reaction revealed a significant effect on total bacteria, whereas F. succinogenes and R. flavefaciens population while R. albus was not affected by the M and U supplementation. Based on this study, it could be concluded that M and urea U supplementation could improve the nutritive value of Leucaena silage and enhance in vitro rumen fermentation efficiency. This study also suggested that the combination use of M and U supplementation level was at 2% and 1%, respectively
    corecore