48 research outputs found

    Experimental and Molecular Modeling Study of the Three-Phase Behavior of ( n

    Full text link

    Bulk Liquid Water at Ambient Temperature and Pressure from MP2 Theory

    Full text link
    MP2 provides a good description of hydrogen bonding in water clusters and includes long-range dispersion interactions without the need to introduce empirical elements in the description of the interatomic potential. To assess its performance for bulk liquid water under ambient conditions, an isobaric-isothermal (NpT) Monte Carlo simulation at the second-order Moller-Plesset perturbation theory level (MP2) has been performed. The obtained value of the water density is excellent (1.02 g/mL), and the calculated radial distribution functions are in fair agreement with experimental data. The MP2 results are compared to a few density functional approximations, including semilocal functionals, hybrid functionals, and functionals including empirical dispersion corrections. These results demonstrate the feasibility of directly sampling the potential energy surface of condensed-phase systems using correlated wave function theory, and their quality paves the way for further applications
    corecore