8,932 research outputs found

    Predicting Punitive Attitudes: Racial-Animus towards New Immigrant and Aboriginal Minority Groups as a Mediating Agent upon Public Crime Concerns

    Get PDF
    In English-speaking Western societyñ€ℱs punitive attitudes towards the sentencing of criminal offenders is a well-established phenomenon. Two theoretical models; the Crime-distrust model and Racial-animus model are demonstrated predictors of punitive attitudes. However, little is known about how racial prejudice impacts the association between the publicñ€ℱs crime concerns and their demand for harsher sentencing outcomes. The present study utilises online survey data obtained from a convenience sample of 566 Australian residents to examine the Racial-animus model as a mediating agent upon the Crime-distrust model and its relationship with punitive attitudes. A significant indirect effect of racial animus is demonstrated upon the perception of increasing crime rates and public confidence in the court system and punitive attitudes, regardless of whether animus is towards new-immigrants or Indigenous Australians. A significant indirect relationship between fear of crime and the demand for harsher sentencing is only demonstrated through negative perceptions of new immigrants. Results lend support for a mediation model whereby the indirect effect of fear of crime is significant when mediated by negative sentiment towards new-immigrants but not towards Indigenous Australians. Future research using a representative sample of the Australian population is indicated to increase the confidence with which findings are interpreted

    Decoherence of Atomic Gases in Largely Detuned Laser Fields

    Get PDF
    We study theoretically the decoherence of a gas of bosonic atoms induced by the interaction with a largely detuned laser beam. It is shown that for a standing laser beam decoherence coincides with the single-particle result. For a running laser beam many-particle effects lead to significant modifications.Comment: 5 pages, 2 Figures, RevTe

    Cluster Populations in A115 and A2283

    Get PDF
    This paper presents four color narrow-band photometry of clusters A115 (z=0.191z=0.191) and A2283 (z=0.182z=0.182) in order to follow the star formation history of various galaxy types. Although located at similar redshifts, the two clusters display very different fractions of blue galaxies (i.e. the Butcher-Oemler effect, fB=0.13f_B = 0.13 for A115, fB=0.30f_B = 0.30 for A2283). A system of photometric classification is applied to the cluster members that divides the cluster population into four classes based on their recent levels of star formation. It is shown that the blue population of each cluster is primarily composed of normal starforming (SFR < 1 M_{\sun} yrs−1^{-1}) galaxies at the high luminosity end, but with an increasing contribution from a dwarf starburst population below M5500=−20M_{5500}= -20. This dwarf starburst population appears to be the same population of low mass galaxies identified in recent HST imaging (Koo et al 1997), possible progenitors to present-day cluster dwarf ellipticals, irregulars and BCD's. Deviations in the color-magnitude relationship for the red galaxies in each cluster suggest that a population of blue S0's is evolving into present-day S0 colors at this epoch. The radial distribution of the blue population supports the prediction of galaxy harassment mechanisms for tidally induced star formation operating on an infalling set of gas-rich galaxies.Comment: 28 pages including 2 tables and 9 figures, AASTeX v4.0. Accepted by Ap.J. Data, referee report and response are avaliable from http://zebu.uoregon.edu/~j

    Oscillatory Flows Induced by Microorganisms Swimming in Two-dimensions

    Get PDF
    We present the first time-resolved measurements of the oscillatory velocity field induced by swimming unicellular microorganisms. Confinement of the green alga C. reinhardtii in stabilized thin liquid films allows simultaneous tracking of cells and tracer particles. The measured velocity field reveals complex time-dependent flow structures, and scales inversely with distance. The instantaneous mechanical power generated by the cells is measured from the velocity fields and peaks at 15 fW. The dissipation per cycle is more than four times what steady swimming would require.Comment: 4 pages, 4 figure

    Mach-Zehnder Interferometry in a Strongly Driven Superconducting Qubit

    Full text link
    We demonstrate Mach-Zehnder-type interferometry in a superconducting flux qubit. The qubit is a tunable artificial atom, whose ground and excited states exhibit an avoided crossing. Strongly driving the qubit with harmonic excitation sweeps it through the avoided crossing two times per period. As the induced Landau-Zener transitions act as coherent beamsplitters, the accumulated phase between transitions, which varies with microwave amplitude, results in quantum interference fringes for n=1...20 photon transitions. The generalization of optical Mach-Zehnder interferometry, performed in qubit phase space, provides an alternative means to manipulate and characterize the qubit in the strongly-driven regime.Comment: 14 pages, 6 figure

    Low-cost interference lithography

    Get PDF
    The authors report demonstration of a low-cost ( ∌ 1000 USD) interference lithography system based on a Lloyd’s mirror interferometer that is capable of ∌ 300 nm pitch patterning. The components include only a 405 nm GaN diode-laser module, a machinist’s block, a chrome-coated silicon mirror, substrate, and double-sided carbon scanning electron microscopy (SEM) tape. The laser and the machinist’s block were assembled in a linear configuration, and to complete the system, the mirror and substrate were taped to perpendicular surfaces of the machinist’s block. Approximately 50 silicon substrates were prepared, exposed, and developed, after which some were inspected in a SEM. The associated laser spectrum was also measured, enabling calculation of the laser’s fringe visibility as it varied along the substrate surface. To compare the exposed resist pattern to the fringe visibility, the authors measured the first order diffraction efficiency as a function of position along the grating surface. Their measurements indicated that artifacts seen in both the optical spectrum and resulting grating patterns arose from the laser diode source, thus improving the source characteristics will be the topic of future work.Singapore-MIT Alliance for Research and Technolog

    Free space-coupled superconducting nanowire single photon detectors for infrared optical communications

    Get PDF
    This paper describes the construction of a cryostat and an optical system with a free-space coupling efficiency of 56.5% +/- 3.4% to a superconducting nanowire single-photon detector (SNSPD) for infrared quantum communication and spectrum analysis. A 1K pot decreases the base temperature to T = 1.7 K from the 2.9 K reached by the cold head cooled by a pulse-tube cryocooler. The minimum spot size coupled to the detector chip was 6.6 +/- 0.11 {\mu}m starting from a fiber source at wavelength, {\lambda} = 1.55 {\mu}m. We demonstrated efficient photon counting on a detector with an 8 x 7.3 {\mu}m^2 area. We measured a dark count rate of 95 +/- 3.35 kcps and a system detection efficiency of 1.64% +/- 0.13%. We explain the key steps that are required to further improve the coupling efficiency.Comment: 16 pages, double-space

    Creation of Skyrmions in a Spinor Bose-Einstein Condensate

    Full text link
    We propose a scheme for the creation of skyrmions (coreless vortices) in a Bose-Einstein condensate with hyperfine spin F=1. In this scheme, four traveling-wave laser beams, with Gaussian or Laguerre-Gaussian transverse profiles, induce Raman transitions with an anomalous dependence on the laser polarization, thereby generating the optical potential required for producing skyrmions.Comment: 5 pages, 2 figures, RevTe

    On the effects of turbulence on a screw dynamo

    Full text link
    In an experiment in the Institute of Continuous Media Mechanics in Perm (Russia) an non--stationary screw dynamo is intended to be realized with a helical flow of liquid sodium in a torus. The flow is necessarily turbulent, that is, may be considered as a mean flow and a superimposed turbulence. In this paper the induction processes of the turbulence are investigated within the framework of mean--field electrodynamics. They imply of course a part which leads to an enhanced dissipation of the mean magnetic field. As a consequence of the helical mean flow there are also helical structures in the turbulence. They lead to some kind of α\alpha--effect, which might basically support the screw dynamo. The peculiarity of this α\alpha--effect explains measurements made at a smaller version of the device envisaged for the dynamo experiment. The helical structures of the turbulence lead also to other effects, which in combination with a rotational shear are potentially capable of dynamo action. A part of them can basically support the screw dynamo. Under the conditions of the experiment all induction effects of the turbulence prove to be rather weak in comparison to that of the main flow. Numerical solutions of the mean--field induction equation show that all the induction effects of the turbulence together let the screw dynamo threshold slightly, at most by one per cent, rise. The numerical results give also some insights into the action of the individual induction effects of the turbulence.Comment: 15 pages, 7 figures, in GAFD prin
    • 

    corecore