742 research outputs found

    The Hox Gene egl-5 Acts as a Terminal Selector for VD13 Development via Wnt Signaling

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Nervous systems are comprised of diverse cell types that differ functionally and morphologically. During development, extrinsic signals, e.g., growth factors, can activate intrinsic programs, usually orchestrated by networks of transcription factors. Within that network, transcription factors that drive the specification of features specific to a limited number of cells are often referred to as terminal selectors. While we still have an incomplete view of how individual neurons within organisms become specified, reporters limited to a subset of neurons in a nervous system can facilitate the discovery of cell specification programs. We have identified a fluorescent reporter that labels VD13, the most posterior of the 19 inhibitory GABA (γ-amino butyric acid)-ergic motorneurons, and two additional neurons, LUAL and LUAR. Loss of function in multiple Wnt signaling genes resulted in an incompletely penetrant loss of the marker, selectively in VD13, but not the LUAs, even though other aspects of GABAergic specification in VD13 were normal. The posterior Hox gene, egl-5, was necessary for expression of our marker in VD13, and ectopic expression of egl-5 in more anterior GABAergic neurons induced expression of the marker. These results suggest egl-5 is a terminal selector of VD13, subsequent to GABAergic specification

    The primordial Helium-4 abundance determination: systematic effects

    Get PDF
    By extrapolating to O/H = N/H = 0 the empirical correlations Y-O/H and Y-N/H defined by a relatively large sample of ~ 45 Blue Compact Dwarfs (BCDs), we have obtained a primordial 4Helium mass fraction Yp= 0.2443+/-0.0015 with dY/dZ = 2.4+/-1.0. This result is in excellent agreement with the average Yp= 0.2452+/-0.0015 determined in the two most metal-deficient BCDs known, I Zw 18 (Zsun/50) and SBS 0335-052 (Zsun/41), where the correction for He production is smallest. The quoted error (1sigma) of < 1% is statistical and does not include systematic effects. We examine various systematic effects including collisional excitation of Hydrogen lines, ionization structure and temperature fluctuation effects, and underlying stellar HeI absorption, and conclude that combining all systematic effects, our Yp may be underestimated by ~ 2-4%. Taken at face value, our Yp implies a baryon-to-photon number ratio eta = 4.7x10^-10 and a baryon mass fraction Omega_b h^2_{100} = 0.017+/-0.005 (2sigma), consistent with the values obtained from deuterium and Cosmic Microwave Background measurements. Correcting Yp upward by 2-4% would make the agreement even better.Comment: 12 pages, 5 PS figures, to appear in "Matter in the Universe", ed P. Jetzer, K. Pretzl and R. von Steiger, Kluwer, Dordrecht (2002

    Inhomogeneous Big Bang Nucleosynthesis and Mutual Ion Diffusion

    Full text link
    We present a study of inhomogeneous big bang nucleosynthesis with emphasis on transport phenomena. We combine a hydrodynamic treatment to a nuclear reaction network and compute the light element abundances for a range of inhomogeneity parameters. We find that shortly after annihilation of electron-positron pairs, Thomson scattering on background photons prevents the diffusion of the remaining electrons. Protons and multiply charged ions then tend to diffuse into opposite directions so that no net charge is carried. Ions with Z>1 get enriched in the overdense regions, while protons diffuse out into regions of lower density. This leads to a second burst of nucleosynthesis in the overdense regions at T<20 keV, leading to enhanched destruction of deuterium and lithium. We find a region in the parameter space at 2.1E-10<eta<5.2E-10 where constraints 7Li/H<10^{-9.7} and D/H<10^{-4.4} are satisfied simultaneously.Comment: 9 pages, minor changes to match the PRD versio

    Spontaneous baryogenesis in flat directions

    Full text link
    We discuss a spontaneous baryogenesis mechanism in flat directions. After identifying the Nambu-Goldstone mode which derivatively couples to the associated UU(1) current and rotates due to the A-term, we show that spontaneous baryogenesis can be naturally realized in the context of the flat direction. As applications, we discuss two scenarios of baryogenesis in detail. One is baryogenesis in a flat direction with a vanishing B−LB-L charge, especially, with neither baryon nor lepton charge, which was recently proposed by Chiba and the present authors. The other is a baryogenesis scenario compatible with a large lepton asymmetry.Comment: 10 pages, no figure, the version accepted to Phys. Rev. D; a few explanatory comments are adde

    Constraining The Universal Lepton Asymmetry

    Full text link
    The relic cosmic background neutrinos accompanying the cosmic microwave background (CMB) photons may hide a universal lepton asymmetry orders of magnitude larger than the universal baryon asymmetry. At present, the only direct way to probe such an asymmetry is through its effect on the abundances of the light elements produced during primordial nucleosynthesis. The relic light element abundances also depend on the baryon asymmetry, parameterized by the baryon density parameter (eta_B = n_B/n_gamma = 10^(-10)*eta_10), and on the early-universe expansion rate, parameterized by the expansion rate factor (S = H'/H) or, equivalently by the effective number of neutrinos (N_nu = 3 + 43(S^2 - 1)/7). We use data from the CMB (and Large Scale Structure: LSS) along with the observationally-inferred relic abundances of deuterium and helium-4 to provide new bounds on the universal lepton asymmetry, finding for eta_L, the analog of eta_B, 0.072 +/- 0.053 if it is assumed that N_nu = 3 and, 0.115 +/- 0.095 along with N_nu = 3.3^{+0.7}_{-0.6}, if N_nu is free to vary

    Precision Primordial 4^4He Measurement with CMB Experiments

    Full text link
    Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) are two major pillars of cosmology. Standard BBN accurately predicts the primordial light element abundances (4^4He, D, 3^3He and 7^7Li), depending on one parameter, the baryon density. Light element observations are used as a baryometers. The CMB anisotropies also contain information about the content of the universe which allows an important consistency check on the Big Bang model. In addition CMB observations now have sufficient accuracy to not only determine the total baryon density, but also resolve its principal constituents, H and 4^4He. We present a global analysis of all recent CMB data, with special emphasis on the concordance with BBN theory and light element observations. We find ΩBh2=0.025+0.0019−0.0026\Omega_{B}h^{2}=0.025+0.0019-0.0026 and Yp=0.250+0.010−0.014Y_{p}=0.250+0.010-0.014 (fraction of baryon mass as 4^4He) using CMB data alone, in agreement with 4^4He abundance observations. With this concordance established we show that the inclusion of BBN theory priors significantly reduces the volume of parameter space. In this case, we find ΩBh2=0.0244+0.00137−0.00284\Omega_{B}h^2=0.0244+0.00137-0.00284 and Yp=0.2493+0.0006−0.001Y_p = 0.2493+0.0006-0.001. We also find that the inclusion of deuterium abundance observations reduces the YpY_p and ΩBh2\Omega_{B}h^2 ranges by a factor of ∼\sim 2. Further light element observations and CMB anisotropy experiments will refine this concordance and sharpen BBN and the CMB as tools for precision cosmology.Comment: 7 pages, 3 color figures made minor changes to bring inline with journal versio

    Patient Perspectives on Tobacco Use Treatment in Primary Care

    Get PDF
    IntroductionEvidence-based tobacco cessation interventions increase quit rates, yet most smokers do not use them. Every primary care visit offers the potential to discuss such options, but communication can be tricky for patients and provider alike. We explored smokers’ personal interactions with health care providers to better understand what it is like to be a smoker in an increasingly smoke-free era and the resources needed to support quit attempts and to better define important patient-centered outcomes.MethodsThree 90-minute focus groups, involving 33 patients from 3 primary care clinics, were conducted. Participants were current or recent (having quit within 6 months) smokers. Topics included tobacco use, quit attempts, and interactions with providers, followed by more pointed questions exploring actions patients want from providers and outcome measures that would be meaningful to patients.ResultsFour themes were identified through inductive coding techniques: 1) the experience of being a tobacco user (inconvenience, shame, isolation, risks, and benefits), 2) the medical encounter (expectations of providers, trust and respect, and positive, targeted messaging), 3) high-value actions (consistent dialogue, the addiction model, point-of-care nicotine patches, educational materials, carbon monoxide monitoring, and infrastructure), and 4) patient-centered outcomes.ConclusionEngaged patient-centered smoking cessation counseling requires seeking the patient voice early in the process. Participants desired honest, consistent, and pro-active discussions and actions. Participants also suggested creative patient-centered outcome measures to consider in future research

    MUSE Analysis of Gas around Galaxies (MAGG) - I: Survey design and the environment of a near pristine gas cloud at z ≈ 3.5

    Get PDF
    We present the design, methods, and first results of the MUSE Analysis of Gas around Galaxies (MAGG) survey, a large programme on the Multi Unit Spectroscopic Explorer (MUSE) instrument at the Very Large Telescope (VLT) which targets 28 z > 3.2 quasars to investigate the connection between optically-thick gas and galaxies at z ∼ 3 − 4. MAGG maps the environment of 52 strong absorption line systems at z ≳ 3, providing the first statistical sample of galaxies associated with gas-rich structures in the early Universe. In this paper, we study the galaxy population around a very metal poor gas cloud at z ≈ 3.53 towards the quasar J124957.23−015928.8. We detect three Lyα emitters within ≲200 km s−1 of the cloud redshift, at projected separations ≲185 kpc (physical). The presence of star-forming galaxies near a very metal-poor cloud indicates that metal enrichment is still spatially inhomogeneous at this redshift. Based on its very low metallicity and the presence of nearby galaxies, we propose that the most likely scenario for this LLS is that it lies within a filament which may be accreting onto a nearby galaxy. Taken together with the small number of other LLSs studied with MUSE, the observations to date show a range of different environments near strong absorption systems. The full MAGG survey will significantly expand this sample and enable a statistical analysis of the link between gas and galaxies to pin down the origin of these diverse environments at z ≈ 3 − 4

    Gas Accretion via Lyman Limit Systems

    Full text link
    In cosmological simulations, a large fraction of the partial Lyman limit systems (pLLSs; 16<log N(HI)<17.2) and LLSs (17.2log N(HI)<19) probes large-scale flows in and out of galaxies through their circumgalactic medium (CGM). The overall low metallicity of the cold gaseous streams feeding galaxies seen in these simulations is the key to differentiating them from metal rich gas that is either outflowing or being recycled. In recent years, several groups have empirically determined an entirely new wealth of information on the pLLSs and LLSs over a wide range of redshifts. A major focus of the recent research has been to empirically determine the metallicity distribution of the gas probed by pLLSs and LLSs in sizable and representative samples at both low (z2) redshifts. Here I discuss unambiguous evidence for metal-poor gas at all z probed by the pLLSs and LLSs. At z<1, all the pLLSs and LLSs so far studied are located in the CGM of galaxies with projected distances <100-200 kpc. Regardless of the exact origin of the low-metallicity pLLSs/LLSs, there is a significant mass of cool, dense, low-metallicity gas in the CGM that may be available as fuel for continuing star formation in galaxies over cosmic time. As such, the metal-poor pLLSs and LLSs are currently among the best observational evidence of cold, metal-poor gas accretion onto galaxies.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by Springe
    • …
    corecore