1,439 research outputs found
Application of the Hilbert-Huang Transform to the Search for Gravitational Waves
We present the application of a novel method of time-series analysis, the
Hilbert-Huang Transform, to the search for gravitational waves. This algorithm
is adaptive and does not impose a basis set on the data, and thus the
time-frequency decomposition it provides is not limited by time-frequency
uncertainty spreading. Because of its high time-frequency resolution it has
important applications to both signal detection and instrumental
characterization. Applications to the data analysis of the ground and space
based gravitational wave detectors, LIGO and LISA, are described
Hydration-Induced Local Molecular Structures in Nano-Layered Clay Particles
Positronium (Ps) annihilation spectroscopy and thermogravimetry and differential thermal analysis (TG-DTA) were conducted for synthetic smectite clay minerals to investigate local molecular structures induced by water adsorption and desorption. The TG curves indicate the weight loss of ~ 3.5 wt %, ~ 2.5 wt %, and ~ 2.0 wt % for saponite, hectorite, and stevensite due to dehydration, in accordance with DTA endothermic peaks around 332 K, 350 K, and 345 K. It is found based on the results of Ps lifetime spectroscopy that the presence of angstrom-scale open space is sensitively dependent on water adsorption and desorption in smectite clay minerals.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3093
Fundamental Limit of 1/f Frequency Noise in Semiconductor Lasers Due to Mechanical Thermal Noise
So-called 1/f noise has power spectral density inversely proportional to frequency, and is observed in many physical processes. Single longitudinal-mode semiconductor lasers, used in variety of interferometric sensing applications, as well as coherent communications, exhibit 1/f frequency noise at low frequency (typically below 100kHz). Here we evaluate mechanical thermal noise due to mechanical dissipation in semiconductor laser components and give a plausible explanation for the widely-observed 1/f frequency noise, applying a methodology developed for fixed-spacer cavities for laser frequency stabilization. Semiconductor-laser's short cavity, small beam radius, and lossy components are expected to emphasize thermal-noise-limited frequency noise. Our simple model largely explains the different 1/f noise levels observed in various semiconductor lasers, and provides a framework where the noise may be reduced with proper design
Progress and Plans for a US Laser System for LISA
A highly stable and robust laser system is a key component of the space-based LISA (Laser Interferometer Space Antenna) mission architecture. We describe our progress and plans to demonstrate a TRL (Technology Readiness Level) 5 LISA laser system at Goddard Space Flight Center by 2020. The laser system includes a low-noise oscillator followed by a power fiber amplifier. The oscillator is a low-mass, compact external cavity laser, consisting of a semiconductor laser coupled to an optical cavity, built by the laser vendor Redfern Integrated Optics. The amplifier is a diode-pumped Yb fiber with 2.5 watts output, built at Goddard. We show noise and reliability data for the full laser system, and describe our plans to reach TRL 5
Parametric instabilities in the LCGT arm cavity
We evaluated the parametric instabilities of LCGT (Japanese interferometric
gravitational wave detector project) arm cavity. The number of unstable modes
of LCGT is 10-times smaller than that of Advanced LIGO (U.S.A.). Since the
strength of the instabilities of LCGT depends on the mirror curvature more
weakly than that of Advanced LIGO, the requirement of the mirror curvature
accuracy is easier to be achieved. The difference in the parametric
instabilities between LCGT and Advanced LIGO is because of the thermal noise
reduction methods (LCGT, cooling sapphire mirrors; Advanced LIGO, fused silica
mirrors with larger laser beams), which are the main strategies of the
projects. Elastic Q reduction by the barrel surface (0.2 mm thickness
TaO) coating is effective to suppress instabilities in the LCGT arm
cavity. Therefore, the cryogenic interferometer is a smart solution for the
parametric instabilities in addition to thermal noise and thermal lensing.Comment: 6 pages,3 figures. Amaldi7 proceedings, J. Phys.: Conf. Ser.
(accepted
The Biomedical Use of Silk: Past, Present, Future
Humans have long appreciated silk for its lustrous appeal and remarkable physical properties, yet as the mysteries of silk are unraveled, it becomes clear that this outstanding biopolymer is more than a high-tech fiber. This progress report provides a critical but detailed insight into the biomedical use of silk. This journey begins with a historical perspective of silk and its uses, including the long-standing desire to reverse engineer silk. Selected silk structure–function relationships are then examined to appreciate past and current silk challenges. From this, biocompatibility and biodegradation are reviewed with a specific focus of silk performance in humans. The current clinical uses of silk (e.g., sutures, surgical meshes, and fabrics) are discussed, as well as clinical trials (e.g., wound healing, tissue engineering) and emerging biomedical applications of silk across selected formats, such as silk solution, films, scaffolds, electrospun materials, hydrogels, and particles. The journey finishes with a look at the roadmap of next-generation recombinant silks, especially the development pipeline of this new industry for clinical use
An evaluation of possible mechanisms for anomalous resistivity in the solar corona
A wide variety of transient events in the solar corona seem to require
explanations that invoke fast reconnection. Theoretical models explaining fast
reconnection often rely on enhanced resistivity. We start with data derived
from observed reconnection rates in solar flares and seek to reconcile them
with the chaos-induced resistivity model of Numata & Yoshida (2002) and with
resistivity arising out of the kinetic Alfv\'en wave (KAW) instability. We find
that the resistivities arising from either of these mechanisms, when localized
over lengthscales of the order of an ion skin depth, are capable of explaining
the observationally mandated Lundquist numbers.Comment: Accepted, Solar Physic
Usefulness of Real-Time 4D Ultrasonography during Radiofrequency Ablation in a Case of Hepatocellular Carcinoma
We report a case of hepatocellular carcinoma (HCC) with chronic hepatitis C virus infection successfully treated with percutaneous radiofrequency ablation (RFA) under live four-dimensional (4D) echo guidance. A 65-year-old Japanese man had a HCC nodule in the liver S5 region 2.0 cm in diameter. We performed real-time 4D ultrasonography during RFA therapy with a LeVeen needle electrode. The echo guidance facilitated an accurate approach for the needle puncture. The guidance was also useful for confirming whether an adequate safety margin for the nodule had been obtained. Thus real-time 4D ultrasonography echo technique appears to provide safe guidance of RFA needles via accurate targeting of HCC nodules, thereby allowing real-time visualization when combined with echo contrast. Furthermore the position of the needle in a still image was confirmed in every area using a multiview procedure
Exponents of 2-multiarrangements and multiplicity lattices
We introduce a concept of multiplicity lattices of 2-multiarrangements,
determine the combinatorics and geometry of that lattice, and give a criterion
and method to construct a basis for derivation modules effectively.Comment: 14 page
- …