3,895 research outputs found
Non-perturbative vacuum-polarization effects in proton-laser collisions
In the collision of a high-energy proton beam and a strong laser field,
merging of the laser photons can occur due to the polarization of vacuum. The
probability of photon merging is calculated by accounting exactly for the laser
field and presents a highly non-perturbative dependence on the laser intensity
and frequency. It is shown that the non-perturbative vacuum-polarization
effects can be experimentally measured by combining the next-generation of
table-top petawatt lasers with presently available proton accelerators.Comment: 5 pages, 2 figure
Multivariate Granger Causality and Generalized Variance
Granger causality analysis is a popular method for inference on directed
interactions in complex systems of many variables. A shortcoming of the
standard framework for Granger causality is that it only allows for examination
of interactions between single (univariate) variables within a system, perhaps
conditioned on other variables. However, interactions do not necessarily take
place between single variables, but may occur among groups, or "ensembles", of
variables. In this study we establish a principled framework for Granger
causality in the context of causal interactions among two or more multivariate
sets of variables. Building on Geweke's seminal 1982 work, we offer new
justifications for one particular form of multivariate Granger causality based
on the generalized variances of residual errors. Taken together, our results
support a comprehensive and theoretically consistent extension of Granger
causality to the multivariate case. Treated individually, they highlight
several specific advantages of the generalized variance measure, which we
illustrate using applications in neuroscience as an example. We further show
how the measure can be used to define "partial" Granger causality in the
multivariate context and we also motivate reformulations of "causal density"
and "Granger autonomy". Our results are directly applicable to experimental
data and promise to reveal new types of functional relations in complex
systems, neural and otherwise.Comment: added 1 reference, minor change to discussion, typos corrected; 28
pages, 3 figures, 1 table, LaTe
Laser photon merging in proton-laser collisions
The quantum electrodynamical vacuum polarization effects arising in the
collision of a high-energy proton beam and a strong, linearly polarized laser
field are investigated. The probability that laser photons merge into one
photon by interacting with the proton`s electromagnetic field is calculated
taking into account the laser field exactly. Asymptotics of the probability are
then derived according to different experimental setups suitable for detecting
perturbative and nonperturbative vacuum polarization effects. The
experimentally most feasible setup involves the use of a strong optical laser
field. It is shown that in this case measurements of the polarization of the
outgoing photon and and of its angular distribution provide promising tools to
detect these effects for the first time.Comment: 38 pages, 9 figure
scattering at the LHC with the lepton pair production and one proton tagging
Analytical formulas for the cross section of the reaction are presented. Fiducial cross sections are compared with those
measured recently by the ATLAS collaboration.Comment: 12 pages, 1 figur
Short-Wave Excitations in Non-Local Gross-Pitaevskii Model
It is shown, that a non-local form of the Gross-Pitaevskii equation allows to
describe not only the long-wave excitations, but also the short-wave ones in
the systems with Bose-condensate. At given parameter values, the excitation
spectrum mimics the Landau spectrum of quasi-particle excitations in superfluid
Helium with roton minimum. The excitation wavelength, at which the roton
minimum exists, is close to the inter-particle interaction range. It is shown,
that the existence domain of the spectrum with a roton minimum is reduced, if
one accounts for an inter-particle attraction.Comment: 5 pages, 5 figures, UJP style; presented at Bogolyubov Kyiv
Conference "Modern Problems of Theoretical and Mathematical Physics",
September 15-18, 200
Weak interaction corrections to muon pair production via the photon fusion at the LHC
Analytical formulas describing the correction due to the boson exchange
to the cross section of the reaction are
presented. When the invariant mass of the produced muon pair and its total transverse momentum is large, the correction is
of the order of 20%.Comment: 17 pages, 5 figure
On production of heavy charged particles in fusion at planned colliders
Production of heavy fermions in ultraperipheral collisions () and the semiexclusive reaction () is considered. Differential
and total cross sections for the energies of the planned colliders are
presented.Comment: 8 pages, 4 figures, 2 table
libepa -- a C++/Python library for calculations of cross sections of ultraperipheral collisions
The library provides a set of C++/Python functions for computing cross
sections of ultraperipheral collisions of high energy particles under the
equivalent photons approximation. Cross sections are represented through
multiple integrals over the phase space. The integrals are calculated through
recurrent application of algorithms for one dimensional integration. The paper
contains an introduction to the theory of ultraperipheral collisions, discusses
the library approach and provides a few examples of calculations.Comment: 25 pages, 6 figures, 1 table. See the arXiv archive for supplementary
materials (code
A Combine On-Line Acoustic Flowmeter and Fluorocarbon Coolant Mixture Analyzer for The ATLAS Silicon Tracker
An upgrade to the ATLAS silicon tracker cooling control system may require a
change from C3F8 (octafluoro-propane) to a blend containing 10-30% of C2F6
(hexafluoro-ethane) to reduce the evaporation temperature and better protect
the silicon from cumulative radiation damage with increasing LHC luminosity.
Central to this upgrade is a new acoustic instrument for the real-time
measurement of the C3F8/C2F6 mixture ratio and flow. The instrument and its
Supervisory, Control and Data Acquisition (SCADA) software are described in
this paper. The instrument has demonstrated a resolution of 3.10-3 for
C3F8/C2F6 mixtures with ~20%C2F6, and flow resolution of 2% of full scale for
mass flows up to 30gs-1. In mixtures of widely-differing molecular weight (mw),
higher mixture precision is possible: a sensitivity of < 5.10-4 to leaks of
C3F8 into the ATLAS pixel detector nitrogen envelope (mw difference 160) has
been seen. The instrument has many potential applications, including the
analysis of mixtures of hydrocarbons, vapours for semi-conductor manufacture
and anaesthesia
- …