1,417 research outputs found

    Integrating the Fermi Gamma-Ray Burst Monitor into the 3rd Interplanetary Network

    Full text link
    We are integrating the Fermi Gamma-Ray Burst Monitor (GBM) into the Interplanetary Network (IPN) of Gamma-Ray Burst (GRB) detectors. With the GBM, the IPN will comprise 9 experiments. This will 1) assist the Fermi team in understanding and reducing their systematic localization uncertainties, 2) reduce the sizes of the GBM and Large Area Telescope (LAT) error circles by 1 to 4 orders of magnitude, 3) facilitate the identification of GRB sources with objects found by ground- and space-based observatories at other wavelengths, from the radio to very high energy gamma-rays, 4) reduce the uncertainties in associating some LAT detections of high energy photons with GBM bursts, and 5) facilitate searches for non-electromagnetic GRB counterparts, particularly neutrinos and gravitational radiation. We present examples and demonstrate the synergy between Fermi and the IPN. This is a Fermi Cycle 2 Guest Investigator project.Comment: 5 pages, 11 figures. 2009 Fermi Symposium. eConf Proceedings C09112

    Search for astro-gravity correlations

    Get PDF
    A new approach in the gravitational wave experiment is considered. In addition to the old method of searching for coincident reactions of two separated gravitational antennae it was proposed to seek perturbations of the gravitational detector noise background correlated with astrophysical events such as neutrino and gamma ray bursts which can be relaibly registered by correspondent sensors. A general algorithm for this approach is developed. Its efficiency is demonstrated in reanalysis of the old data concerning the phenomenon of neutrino-gravity correlation registered during of SN1987A explosion.Comment: 29 pages (LaTeX), 4 figures (EPS

    Gamma Ray Bursts from the Evolved Galactic Nuclei

    Get PDF
    A new cosmological scenario for the origin of gamma ray bursts (GRBs) is proposed. In our scenario, a highly evolved central core in the dense galactic nucleus is formed containing a subsystem of compact stellar remnants (CSRs), such as neutron stars and black holes. Those subsystems result from the dynamical evolution of dense central stellar clusters in the galactic nuclei through merging of stars, thereby forming (as has been realized by many authors) the short-living massive stars and then CSRs. We estimate the rate of random CSR collisions in the evolved galactic nuclei by taking into account, similar to Quinlan & Shapiro (1987), the dissipative encounters of CSRs, mainly due to radiative losses of gravitational waves, which results in the formation of intermediate short-living binaries, with further coalescence of the companions to produce GRBs. We also consider how the possible presence of a central supermassive black hole, formed in a highly evolved galactic nucleus, influences the CSR binary formation. This scenario does not postulate ad hoc a required number of tight binary neutron stars in the galaxies. Instead, it gives, for the most realistic parameters of the evolved nuclei, the expected rate of GRBs consistent with the observed one, thereby explaining the GRB appearance in a natural way of the dynamical evolution of galactic nuclei. In addition, this scenario provides an opportunity for a cosmological GRB recurrence, previously considered to be a distinctive feature of GRBs of a local origin only. We also discuss some other observational tests of the proposed scenario.Comment: 25 pages, LATEX, uses aasms4.sty, accepted by Ap

    Extended Emission from Short Gamma-Ray Bursts Detected with SPI-ACS/INTEGRAL

    Full text link
    The short duration (T90 < 2 s) gamma-ray bursts (GRBs) detected in the SPI-ACS experiment onboard the INTEGRAL observatory are investigated. Averaged light curves have been constructed for various groups of events, including short GRBs and unidentified short events. Extended emission has been found in the averaged light curves of both short GRBs and unidentified short events. It is shown that the fraction of the short GRBs in the total number of SPI-ACS GRBs can range from 30 to 45%, which is considerably larger than has been thought previously.Comment: 27 pages, 10 figure

    The Interplanetary Network Supplement to the Fermi GBM Catalog of Cosmic Gamma-Ray Bursts

    Full text link
    We present Interplanetary Network (IPN) data for the gamma-ray bursts in the first Fermi Gamma-Ray Burst Monitor (GBM) catalog. Of the 491 bursts in that catalog, covering 2008 July 12 to 2010 July 11, 427 were observed by at least one other instrument in the 9-spacecraft IPN. Of the 427, the localizations of 149 could be improved by arrival time analysis (or triangulation). For any given burst observed by the GBM and one other distant spacecraft, triangulation gives an annulus of possible arrival directions whose half-width varies between about 0.4' and 32 degrees, depending on the intensity, time history, and arrival direction of the burst, as well as the distance between the spacecraft. We find that the IPN localizations intersect the 1 sigma GBM error circles in only 52% of the cases, if no systematic uncertainty is assumed for the latter. If a 6 degree systematic uncertainty is assumed and added in quadrature, the two localization samples agree about 87% of the time, as would be expected. If we then multiply the resulting error radii by a factor of 3, the two samples agree in slightly over 98% of the cases, providing a good estimate of the GBM 3 sigma error radius. The IPN 3 sigma error boxes have areas between about 1 square arcminute and 110 square degrees, and are, on the average, a factor of 180 smaller than the corresponding GBM localizations. We identify two bursts in the IPN/GBM sample that did not appear in the GBM catalog. In one case, the GBM triggered on a terrestrial gamma flash, and in the other, its origin was given as uncertain. We also discuss the sensitivity and calibration of the IPN.Comment: 52 pages, 12 figures, 4 tables. Revised version, resubmitted to the Astrophysical Journal Supplement Series following refereeing. Figures of the localizations in Table 3 may be found on the IPN website, at ssl.berkeley.edu/ipn3/YYMMDD, where YY, MM, and DD are the year, month, and day of the burst, sometimes with suffixes A or

    The ultraluminous GRB 110918A

    Full text link
    GRB 110918A is the brightest long GRB detected by Konus-WIND during its 19 years of continuous observations and the most luminous GRB ever observed since the beginning of the cosmological era in 1997. We report on the final IPN localization of this event and its detailed multiwavelength study with a number of space-based instruments. The prompt emission is characterized by a typical duration, a moderare EpeakE_{peak} of the time-integrated spectrum, and strong hard-to-soft evolution. The high observed energy fluence yields, at z=0.984, a huge isotropic-equivalent energy release Eiso=(2.1±0.1)×1054E_{iso}=(2.1\pm0.1)\times10^{54} erg. The record-breaking energy flux observed at the peak of the short, bright, hard initial pulse results in an unprecedented isotropic-equivalent luminosity Liso=(4.7±0.2)×1054L_{iso}=(4.7\pm0.2)\times10^{54}erg s1^{-1}. A tail of the soft gamma-ray emission was detected with temporal and spectral behavior typical of that predicted by the synchrotron forward-shock model. Swift/XRT and Swift/UVOT observed the bright afterglow from 1.2 to 48 days after the burst and revealed no evidence of a jet break. The post-break scenario for the afterglow is preferred from our analysis, with a hard underlying electron spectrum and ISM-like circumburst environment implied. We conclude that, among multiple reasons investigated, the tight collimation of the jet must have been a key ingredient to produce this unusually bright burst. The inferred jet opening angle of 1.7-3.4 deg results in reasonable values of the collimation-corrected radiated energy and the peak luminosity, which, however, are still at the top of their distributions for such tightly collimated events. We estimate a detection horizon for a similar ultraluminous GRB of z7.5z\sim7.5 for Konus-WIND, and z12z\sim12 for Swift/BAT, which stresses the importance of GRBs as probes of the early Universe.Comment: 22 pages, 20 figures, accepted for publication in Ap

    Magnetic Photon Splitting: the S-Matrix Formulation in the Landau Representation

    Get PDF
    Calculations of reaction rates for the third-order QED process of photon splitting in strong magnetic fields traditionally have employed either the effective Lagrangian method or variants of Schwinger's proper-time technique. Recently, Mentzel, Berg and Wunner (1994) presented an alternative derivation via an S-matrix formulation in the Landau representation. Advantages of such a formulation include the ability to compute rates near pair resonances above pair threshold. This paper presents new developments of the Landau representation formalism as applied to photon splitting, providing significant advances beyond the work of Mentzel et al. by summing over the spin quantum numbers of the electron propagators, and analytically integrating over the component of momentum of the intermediate states that is parallel to field. The ensuing tractable expressions for the scattering amplitudes are satisfyingly compact, and of an appearance familiar to S-matrix theory applications. Such developments can facilitate numerical computations of splitting considerably both below and above pair threshold. Specializations to two regimes of interest are obtained, namely the limit of highly supercritical fields and the domain where photon energies are far inferior to that for the threshold of single-photon pair creation. In particular, for the first time the low-frequency amplitudes are simply expressed in terms of the Gamma function, its integral and its derivatives. In addition, the equivalence of the asymptotic forms in these two domains to extant results from effective Lagrangian/proper-time formulations is demonstrated.Comment: 19 pages, 3 figures, REVTeX; accepted for publication in Phys. Rev.
    corecore