1,002 research outputs found

    Time- and frequency-domain polariton interference

    Full text link
    We present experimental observations of interference between an atomic spin coherence and an optical field in a {\Lambda}-type gradient echo memory. The interference is mediated by a strong classical field that couples a weak probe field to the atomic coherence through a resonant Raman transition. Interference can be observed between a prepared spin coherence and another propagating optical field, or between multiple {\Lambda} transitions driving a single spin coherence. In principle, the interference in each scheme can yield a near unity visibility.Comment: 11 pages, 5 figure

    Magnetization in AIIIBV semiconductor heterostructures with the depletion layer of manganese

    Get PDF
    The magnetic moment and magnetization in GaAs/Ga0.84_{0.84}In0.16_{0.16}As/GaAs heterostructures with Mn deluted in GaAs cover layers and with atomically controlled Mn δ\delta-layer thicknesses near GaInAs-quantum well (\sim3 nm) in temperature range T=(1.8-300)K in magnetic field up to 50 kOe have been investigated. The mass magnetization all of the samples of GaAs/Ga0.84_{0.84}In0.16_{0.16}As/GaAs with Mn increases with the increasing of the magnetic field that pointed out on the presence of low-dimensional ferromagnetism in the manganese depletion layer of GaAs based structures. It has been estimated the manganese content threshold at which the ferromagnetic ordering was found.Comment: 8 pages, 3 figure

    The Anti-Coincidence Detector for the GLAST Large Area Telescope

    Get PDF
    This paper describes the design, fabrication and testing of the Anti-Coincidence Detector (ACD) for the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT). The ACD is LAT first-level defense against the charged cosmic ray background that outnumbers the gamma rays by 3-5 orders of magnitude. The ACD covers the top and 4 sides of the LAT tracking detector, requiring a total active area of ~8.3 square meters. The ACD detector utilizes plastic scintillator tiles with wave-length shifting fiber readout. In order to suppress self-veto by shower particles at high gamma-ray energies, the ACD is segmented into 89 tiles of different sizes. The overall ACD efficiency for detection of singly charged relativistic particles entering the tracking detector from the top or sides of the LAT exceeds the required 0.9997.Comment: 33 pages, 19 figure
    corecore