2,083 research outputs found

    Paper Session II-A - A Process to Help Assure Successful Commercial Space Ventures

    Get PDF
    The purpose of this paper is to describe a process for successful space business ventures - a methodology used by highly successful commercial ventures, but relatively new to space business enterprises. What do highly successful commercial business ventures have in common? How do these companies differ from most commercial space ventures? The answer is the implementation of a state-of-the-art customer satisfaction process. Take the case of the latest winners of the Malcolm Baldrige National Quality Award. What did they do that helped to achieve this performance? The answer is they implemented an effective process that measures and achieves the highest possible level of customer satisfaction. The same process can be implemented by space enterprises to achieve comparable commercial results. This paper describes three recent Baldrige winners and the six-step process, including examples of each step. It concludes with the strong recommendation that this process be implemented to assure success in the commercial space world

    Paper Session I-C - Delta II Development and Flight Results

    Get PDF
    This paper describes the design changes to the latest Delta Launch vehicle. Delta II Model 7925, The results of developments on five main subsystems are described. The paper includes the flight results of Delta II launches to date

    Warm absorber, reflection and Fe K line in the X-ray spectrum of IC 4329A

    Get PDF
    Results from the X-ray spectral analysis of the ASCA PV phase observation of the Seyfert 1 galaxy IC 4329A are presented. We find that the 0.4 - 10 keV spectrum of IC 4329A is best described by the sum of a steep (Γ∼1.98\Gamma \sim 1.98) power-law spectrum passing through a warm absorber plus a strong reflection component and associated Fe K line, confirming recent results (Madejski et al. 1995, Mushotsky et al. 1995). Further cold absorption in excess of the Galactic value and covering the entire source is also required by the data, consistent with the edge-on galactic disk and previous X-ray measurements. The effect of the warm absorber at soft X-ray energies is best parameterized by two absorption edges, one consistent with OVI, OVII or NVII, the other consistent with OVIII. A description of the soft excess in terms of blackbody emission, as observed in some other Seyfert 1 galaxies, is ruled out by the data. A large amount of reflection is detected in both the GIS and SIS detectors, at similar intensities. We find a strong correlation between the amount of reflection and the photon index, but argue that the best solution with the present data is that given by the best statistical fit. The model dependence of the Fe K line parameters is also discussed. Our best fit gives a slightly broad (σ≃0.11±0.08\sigma \simeq 0.11 \pm 0.08 keV) and redshifted (E ≃6.20±0.07\simeq 6.20 \pm 0.07 keV) Fe K line, with equivalent width ≃\simeq 89 ±\pm 33 eV. The presence of a weak Fe K line with a strong reflection can be reconciled if one assumes iron underabundances or ionized reflection. We also have modeled the line with a theoretical line profile produced by an accretion disk. This yields results in better agreement with the constraints obtained from the reflection component.Comment: Accepted for publication in The Astrophysical Journal, 10th February 1996 issue; 24 pages and 8 figures + 1 table tared, compressed and uuencoded (with uufiles

    Energy-Dependent Harmonic Ratios of the Cyclotron Features of X0331+53 in the 2004-2005 Outburst

    Full text link
    We report on changes of the cyclotron resonance energies of the recurrent transient pulsar, X0331+53 (V0332+53). The whole RXTE data acquired in the 2004-2005 outburst were utilized. The 3-80 keV source luminosity varied between 1.7x10^36 and 3.5x10^38 ers/s, assuming a distance of 7 kpc. We confirmed that the fundamental cyclotron resonance energy changed from ~22 to ~27 keV in a clear anti-correlation to the source luminosity, and without any hysteresis effects between the rising and declining phases of the outburst. In contrast, the second harmonic energy changed from ~49 to ~54 keV, implying a weaker fractional change as a function of the luminosity. As a result, the observed resonance energy ratio between the second harmonic and the fundamental was ~2.2 when the source was most luminous, whereas the ratio decreased to the nominal value of 2.0 at the least luminous state. Although the significance of this effect is model dependent, these results suggest that the fundamental and second harmonic resonances represent different heights in the accretion column, depending on the mass accretion rate.Comment: 39 pages, 15 figures, 4 tables. Accepted for publication in Astrophysical Journa

    Probing the stellar wind environment of Vela X-1 with MAXI

    Full text link
    Vela X-1 is among the best studied and most luminous accreting X-ray pulsars. The supergiant optical companion produces a strong radiatively-driven stellar wind, which is accreted onto the neutron star producing highly variable X-ray emission. A complex phenomenology, due to both gravitational and radiative effects, needs to be taken into account in order to reproduce orbital spectral variations. We have investigated the spectral and light curve properties of the X-ray emission from Vela X-1 along the binary orbit. These studies allow to constrain the stellar wind properties and its perturbations induced by the compact object. We took advantage of the All Sky Monitor MAXI/GSC data to analyze Vela X-1 spectra and light curves. By studying the orbital profiles in the 4−104-10 and 10−2010-20 keV energy bands, we extracted a sample of orbital light curves (∼15{\sim}15% of the total) showing a dip around the inferior conjunction, i.e., a double-peaked shape. We analyzed orbital phase-averaged and phase-resolved spectra of both the double-peaked and the standard sample. The dip in the double-peaked sample needs NH∼2×1024 N_H\sim2\times10^{24}\,cm−2^{-2} to be explained by absorption solely, which is not observed in our analysis. We show how Thomson scattering from an extended and ionized accretion wake can contribute to the observed dip. Fitted by a cutoff power-law model, the two analyzed samples show orbital modulation of the photon index, hardening by ∼0.3{\sim}0.3 around the inferior conjunction, compared to earlier and later phases, hinting a likely inadequacy of this model. On the contrary, including a partial covering component at certain orbital phase bins allows a constant photon index along the orbital phases, indicating a highly inhomogeneous environment. We discuss our results in the framework of possible scenarios.Comment: 10 pages, 9 figures, accepted for publication in A&

    Quantitative Estimates of Environmental Effects on the Star Formation Rate of Disk Galaxies in Clusters of Galaxies

    Get PDF
    A simple model is constructed to evaluate the change of star formation rate of a disk galaxy due to environmental effects in clusters of galaxies. Three effects, (1) tidal force from the potential well of the cluster, (2) increase of external pressure when the galaxy plows into the intracluster medium, (3) high-speed encounters between galaxies, are investigated. General analysis indicates that the star formation rate increases significantly when the pressure of molecular clouds rises above ∼3×105cm−3K\sim 3\times 10^5 cm^{-3} K in ∼108\sim 10^8 yr. The tidal force from the potential well of the cluster increases pressures of molecular clouds in a disk galaxy infalling towards the cluster center. Before the galaxy reaches the cluster center, the star formation rate reaches a maximum. The peak is three to four times larger than the initial value. If this is the main mechanism of the Butcher-Oemler effect, blue galaxies are expected to be located within ∼300\sim 300 kpc from the center of the cluster. However this prediction is inconsistent with the recent observations. The increase of external pressure when the galaxy plows into the intracluster medium does not change star formation rate of a disk galaxy significantly. The velocity perturbation induced by a single high-speed encounter between galaxies is too small to affect star formation rate of a disk galaxy, while successive high-speed encounters (galaxy harassment) trigger star formation activity because of the accumulation of gas in the galaxy center. Therefore, the galaxy harassment remains as the candidate for a mechanism of the Butcher-Oemler effect.Comment: 12 pages, 13 figures. To be published in Ap

    The Variation of Gas Mass Distribution in Galaxy Clusters: Effects of Preheating and Shocks

    Full text link
    We investigate the origin of the variation of the gas mass fraction in the core of galaxy clusters, which was indicated by our work on the X-ray fundamental plane. The adopted model supposes that the gas distribution characterized by the slope parameter is related to the preheated temperature. Comparison with observations of relatively hot (~> 3 keV) and low redshift clusters suggests that the preheated temperature is about 0.5-2 keV, which is higher than expected from the conventional galactic wind model and possibly suggests the need for additional heating such as quasars or gravitational heating on the largest scales at high redshift. The dispersion of the preheated temperature may be attributed to the gravitational heating in subclusters. We calculate the central gas fraction of a cluster from the gas distribution, assuming that the global gas mass fraction is constant within a virial radius at the time of the cluster collapse. We find that the central gas density thus calculated is in good agreement with the observed one, which suggests that the variation of gas mass fraction in cluster cores appears to be explained by breaking the self-similarity in clusters due to preheated gas. We also find that this model does not change major conclusions on the fundamental plane and its cosmological implications obtained in previous papers, which strongly suggests that not only for the dark halo but also for the intracluster gas the core structure preserves information about the cluster formation.Comment: 17 pages, to be published in Ap

    Footprints in the wind of Vela X-1 traced with MAXI

    Full text link
    The stellar wind around the compact object in luminous wind-accreting high mass X-ray binaries is expected to be strongly ionized with the X-rays coming from the compact object. The stellar wind of hot stars is mostly driven by light absorption in lines of heavier elements, and X-ray photo-ionization significantly reduces the radiative force within the so-called Stroemgren region leading to wind stagnation around the compact object. In close binaries like Vela X-1 this effect might alter the wind structure throughout the system. Using the spectral data from Monitor of All-sky X-ray Image (MAXI), we study the observed dependence of the photoelectric absorption as function of orbital phase in Vela X-1, and find that it is inconsistent with expectations for a spherically-symmetric smooth wind. Taking into account previous investigations we develop a simple model for wind structure with a stream-like photoionization wake region of slower and denser wind trailing the neutron star responsible for the observed absorption curve.Comment: 5 pages, 3 figures, accepted in A&
    • …
    corecore