2,499 research outputs found

    Full-Field, Carrier-Less, Polarization-Diversity, Direct Detection Receiver based on Phase Retrieval

    Get PDF
    We realize dual-polarization full-field recovery using intensity only measurements and phase retrieval techniques based on dispersive elements. 30-Gbaud QPSK waveforms are transmitted over 520-km standard single-mode fiber and equalized from the receiver outputs using 2X2 MIMO

    The Influence of Energetic Factors on Biomarkers of Postmenopausal Breast Cancer Risk

    Get PDF
    Strong and consistent evidence exists that physical activity reduces breast cancer risk by 10-25 %, and several proposed biologic mechanisms have now been investigated in randomized, controlled, exercise intervention trials. Leading hypothesized mechanisms relating to postmenopausal breast cancer include adiposity, endogenous sex hormones, insulin resistance, and chronic low-grade inflammation. In addition, other pathways are emerging as potentially important, including those involving oxidative stress and telomere length, global DNA hypomethylation, immune function, and vitamin D exposure. Recent exercise trials in overweight/obese postmenopausal women implicate weight loss as a mechanism whereby exercise induces favorable changes in circulating estradiol levels and other biomarkers as well. Still it is plausible that some exercise-induced biomarker changes do not require loss of body fat, whereas others depend on abdominal fat loss. We highlight the latest findings from randomized, controlled trials of healthy postmenopausal women, relating exercise to proposed biomarkers for postmenopausal breast cancer risk

    Orbital Selective Magnetism in the Spin-Ladder Iron Selenides Ba1−x_{1-x}Kx_{x}Fe2_2Se3_3

    Full text link
    Here we show that the 2.80(8) {\mu}B/Fe block antiferromagnetic order of BaFe2Se3 transforms into stripe antiferromagnetic order in KFe2Se3 with a decrease in moment to 2.1(1) {\mu}B/Fe. This reduction is larger than expected from the change in electron count from Ba2+^{2+} to K+^{+}, and occurs with the loss of the displacements of Fe atoms from ideal positions in the ladders, as found by neutron pair distribution function analysis. Intermediate compositions remain insulating, and magnetic susceptibility measurements show a suppression of magnetic order and probable formation of a spin-glass. Together, these results imply an orbital-dependent selection of magnetic versus bonded behavior, driven by relative bandwidths and fillings.Comment: Final versio

    Pseudo-random operators of the circular ensembles

    Full text link
    We demonstrate quantum algorithms to implement pseudo-random operators that closely reproduce statistical properties of random matrices from the three universal classes: unitary, symmetric, and symplectic. Modified versions of the algorithms are introduced for the less experimentally challenging quantum cellular automata. For implementing pseudo-random symplectic operators we provide gate sequences for the unitary part of the time-reversal operator.Comment: 5 pages, 4 figures, to be published PR

    Effect of Re-acidification on Buffalo Grass Rhizosphere and Bulk Microbial Communities During Phytostabilization of Metalliferous Mine Tailings

    Get PDF
    Phytostabilized highly acidic, pyritic mine tailings are susceptible to re-acidification over time despite initial addition of neutralizing amendments. Studies examining plant-associated microbial dynamics during re-acidification of phytostabilized regions are sparse. To address this, we characterized the rhizosphere and bulk bacterial communities of buffalo grass used in the phytostabilization of metalliferous, pyritic mine tailings undergoing re-acidification at the Iron King Mine and Humboldt Smelter Superfund Site in Dewey-Humboldt, AZ. Plant-associated substrates representing a broad pH range (2.35-7.76) were sampled to (1) compare the microbial diversity and community composition of rhizosphere and bulk compartments across a pH gradient, and (2) characterize how re-acidification affects the abundance and activity of the most abundant plant growth-promoting bacteria (PGPB; including N2-fixing) versus acid-generating bacteria (AGB; including Fe-cycling/S-oxidizing). Results indicated that a shift in microbial diversity and community composition occurred at around pH 4. At higher pH (>4) the species richness and community composition of the rhizosphere and bulk compartments were similar, and PGPB, such as Pseudomonas, Arthrobacter, Devosia, Phyllobacterium, Sinorhizobium, and Hyphomicrobium, were present and active in both compartments with minimal presence of AGB. In comparison, at lower pH (<4) the rhizosphere had a significantly higher number of species than the bulk (p < 0.05) and the compartments had significantly different community composition (unweighted UniFrac; PERMANOVA, p < 0.05). Whereas some PGPB persisted in the rhizosphere at lower pH, including Arthrobacter and Devosia, they were absent from the bulk. Meanwhile, AGB dominated in both compartments; the most abundant were the Fe-oxidizer Leptospirillum and Fe-reducers Acidibacter and Acidiphilium, and the most active was the Fe-reducer Aciditerrimonas. This predominance of AGB at lower pH, and even their minimal presence at higher pH, contributes to acidifying conditions and poses a significant threat to sustainable plant establishment. These findings have implications for phytostabilization field site management and suggest re-application of compost or an alternate buffering material may be required in regions susceptible to re-acidification to maintain a beneficial bacterial community conducive to long-term plant establishment.National Institute of Environmental and Health Sciences (NIEHS) Superfund Research Program (SRP) [P42 ES004940]; National Science Foundation Graduate Research Fellowhip Program (NSF GRFP) [DGE-1143953]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Mitogen-activated protein kinase kinase 5 regulates proliferation and biosynthetic processes in procyclic forms of Trypanosoma brucei

    Get PDF
    The pathogenic protozoan T. brucei alternates into distinct developmental stages in the mammalian and insect hosts. The mitogen-activated protein kinase (MAPK) signaling pathways transduce extracellular stimuli into a range of cellular responses, which ultimately lead to the adaptation to the external environment. Here, we combined a loss of function approach with stable isotope labeling with amino acids in cell culture (SILAC)-based mass spectrometry (MS) to investigate the role of the mitogen-activated protein kinase kinase 5 (MKK5) in T. brucei. The silencing of MKK5 significantly decreased the proliferation of procyclic forms of T. brucei. To shed light on the molecular alterations associated with this phenotype, we measured the total proteome and phosphoproteome of cells silenced for MKK5. In the total proteome, we observed a general decrease in proteins related to ribosome and translation as well as down-regulation of several components of the fatty acids biosynthesis pathway. In addition, we observed alterations in the protein levels and phosphorylation of key metabolic enzymes, which point toward a suppression of the oxidative metabolism. Taken together, our findings show that the silencing of MKK5 alters cell growth, energy metabolism, protein and fatty acids biosynthesis in procyclic T. brucei

    Dual Polarization Full-Field Signal Waveform Reconstruction Using Intensity Only Measurements for Coherent Communications

    Get PDF
    Conventional optical coherent receivers capture the full electrical field, including amplitude and phase, of a signal waveform by measuring its interference against a stable continuous-wave local oscillator (LO). In optical coherent communications, powerful digital signal processing (DSP) techniques operating on the full electrical field can effectively undo transmission impairments such as chromatic dispersion (CD), and polarization mode dispersion (PMD). Simpler direct detection techniques do not have access to the full electrical field and therefore lack the ability to compensate for these impairments. We present a full-field measurement technique using only direct detection that does not require any beating with a strong carrier LO. Rather, phase retrieval algorithms based on alternating projections that makes use of dispersive elements are discussed, allowing to recover the optical phase from intensity-only measurements. In this demonstration, the phase retrieval algorithm is a modified Gerchberg Saxton (GS) algorithm that achieves a simulated optical signal-to-noise ratio (OSNR) penalty of less than 4dB compared to theory at a bit-error rate of 2 times 10-2. Based on the proposed phase retrieval scheme, we experimentally demonstrate signal detection and subsequent standard 2x2 multiple-input-multiple-output (MIMO) equalization of a polarization-multiplexed 30-Gbaud QPSK transmitted over a 520-km standard single-mode fiber (SMF) span

    Dynamic correlations in symmetric electron-electron and electron-hole bilayers

    Full text link
    The ground-state behavior of the symmetric electron-electron and electron-hole bilayers is studied by including dynamic correlation effects within the quantum version of Singwi, Tosi, Land, and Sjolander (qSTLS) theory. The static pair-correlation functions, the local-field correction factors, and the ground-state energy are calculated over a wide range of carrier density and layer spacing. The possibility of a phase transition into a density-modulated ground state is also investigated. Results for both the electron-electron and electron-hole bilayers are compared with those of recent diffusion Monte Carlo (DMC) simulation studies. We find that the qSTLS results differ markedly from those of the conventional STLS approach and compare in the overall more favorably with the DMC predictions. An important result is that the qSTLS theory signals a phase transition from the liquid to the coupled Wigner crystal ground state, in both the electron-electron and electron-hole bilayers, below a critical density and in the close proximity of layers (d <~ r_sa_0^*), in qualitative agreement with the findings of the DMC simulations.Comment: 13 pages, 11 figures, 2 table
    • …
    corecore