200 research outputs found

    Invariant measures for Burgers equation with stochastic forcing

    Full text link
    In this paper we study the following Burgers equation du/dt + d/dx (u^2/2) = epsilon d^2u/dx^2 + f(x,t) where f(x,t)=dF/dx(x,t) is a random forcing function, which is periodic in x and white noise in t. We prove the existence and uniqueness of an invariant measure by establishing a ``one force, one solution'' principle, namely that for almost every realization of the force, there is a unique distinguished solution that exists for the time interval (-infty, +infty) and this solution attracts all other solutions with the same forcing. This is done by studying the so-called one-sided minimizers. We also give a detailed description of the structure and regularity properties for the stationary solutions. In particular, we prove, under some non-degeneracy conditions on the forcing, that almost surely there is a unique main shock and a unique global minimizer for the stationary solutions. Furthermore the global minimizer is a hyperbolic trajectory of the underlying system of characteristics.Comment: 84 pages, published version, abstract added in migratio

    Herman's Theory Revisited

    Full text link
    We prove that a C2+αC^{2+\alpha}-smooth orientation-preserving circle diffeomorphism with rotation number in Diophantine class DδD_\delta, 0<δ<α≤10<\delta<\alpha\le1, is C1+α−δC^{1+\alpha-\delta}-smoothly conjugate to a rigid rotation. We also derive the most precise version of Denjoy's inequality for such diffeomorphisms.Comment: 10 page

    Ballistic deposition patterns beneath a growing KPZ interface

    Full text link
    We consider a (1+1)-dimensional ballistic deposition process with next-nearest neighbor interaction, which belongs to the KPZ universality class, and introduce for this discrete model a variational formulation similar to that for the randomly forced continuous Burgers equation. This allows to identify the characteristic structures in the bulk of a growing aggregate ("clusters" and "crevices") with minimizers and shocks in the Burgers turbulence, and to introduce a new kind of equipped Airy process for ballistic growth. We dub it the "hairy Airy process" and investigate its statistics numerically. We also identify scaling laws that characterize the ballistic deposition patterns in the bulk: the law of "thinning" of the forest of clusters with increasing height, the law of transversal fluctuations of cluster boundaries, and the size distribution of clusters. The corresponding critical exponents are determined exactly based on the analogy with the Burgers turbulence and simple scaling considerations.Comment: 10 pages, 5 figures. Minor edits: typo corrected, added explanation of two acronyms. The text is essentially equivalent to version

    Low-frequency dynamics of disordered XY spin chains and pinned density waves: from localized spin waves to soliton tunneling

    Full text link
    A long-standing problem of the low-energy dynamics of a disordered XY spin chain is re-examined. The case of a rigid chain is studied where the quantum effects can be treated quasiclassically. It is shown that as the frequency decreases, the relevant excitations change from localized spin waves to two-level systems to soliton-antisoliton pairs. The linear-response correlation functions are calculated. The results apply to other periodic glassy systems such as pinned density waves, planar vortex lattices, stripes, and disordered Luttinger liquids.Comment: (v2) Major improvements in presentation style. One figure added (v3) Another minor chang

    Novel Scintillation Material - ZnO Transparent Ceramics

    Full text link
    ZnO-based scintillation ceramics for application in HENPA LENPA analyzers have been investigated. The following ceramic samples have been prepared: undoped ones (ZnO), an excess of zinc in stoichiometry (ZnO:Zn), doped with gallium (ZnO:Ga) and lithium (ZnO:Li). Optical transmission, x-ray excited emission, scintillation decay and pulse height spectra were measured and analyzed. Ceramics have reasonable transparency in visible range (up to 60% for 0.4 mm thickness) and energy resolution (14.9% at 662 keV Cs137 gamma excitation). Undoped ZnO shows slow (1.6 {\mu}s) luminescence with maximum at 2.37 eV and light yield about 57% of CsI:Tl. ZnO:Ga ceramics show relatively low light yield with ultra fast decay time (1 ns). Lithium doped ceramics ZnO:Li have better decay time than undoped ZnO with fair light yield. ZnO:Li ceramics show good characteristics under alpha-particle excitation and can be applied for the neutral particle analyzers.Comment: 4 pages, 8 figures, research covered in this paper was presented at SCINT2011 conference as a poster, submitted for publication at IEEE Trans. Nucl. Sc

    Nonlinear electron transport in normally pinched-off quantum wire

    Full text link
    Nonlinear electron transport in normally pinched-off quantum wires was studied. The wires were fabricated from AlGaAs/GaAs heterostructures with high-mobility two-dimensional electron gas by electron beam lithography and following wet etching. At certain critical source-drain voltage the samples exhibited a step rise of the conductance. The differential conductance of the open wires was noticeably lower than e^2/h as far as only part of the source-drain voltage dropped between source contact and saddle-point of the potential relief along the wire. The latter limited the electron flow injected to the wire. At high enough source-drain voltages the decrease of the differential conductance due to the real space transfer of electrons from the wire in GaAs to the doped AlGaAs layer was found. In this regime the sign of differential magnetoconductance was changed with reversing the direction of the current in the wire or the magnetic field, whet the magnetic field lies in the heterostructure plane and is directed perpendicular to the current. The dependence of the differential conductance on the magnetic field and its direction indicated that the real space transfer events were mainly mediated by the interface scattering.Comment: LaTeX 2e (epl.cls) 6 pages, 3 figure

    Acoustic Phonon-Assisted Resonant Tunneling via Single Impurities

    Full text link
    We perform the investigations of the resonant tunneling via impurities embedded in the AlAs barrier of a single GaAs/AlGaAs heterostructure. In the I(V)I(V) characteristics measured at 30mK, the contribution of individual donors is resolved and the fingerprints of phonon assistance in the tunneling process are seen. The latter is confirmed by detailed analysis of the tunneling rates and the modeling of the resonant tunneling contribution to the current. Moreover, fluctuations of the local structure of the DOS (LDOS) and Fermi edge singularities are observed.Comment: accepted in Phys. Rev.

    A magnetically-induced Coulomb gap in graphene due to electron-electron interactions

    Get PDF
    Insights into the fundamental properties of graphene's Dirac-Weyl fermions have emerged from studies of electron tunnelling transistors in which an atomically thin layer of hexagonal boron nitride (hBN) is sandwiched between two layers of high purity graphene. Here, we show that when a single defect is present within the hBN tunnel barrier, it can inject electrons into the graphene layers and its sharply defined energy level acts as a high resolution spectroscopic probe of electron-electron interactions in graphene. We report a magnetic field dependent suppression of the tunnel current flowing through a single defect below temperatures of ∼\sim 2 K. This is attributed to the formation of a magnetically-induced Coulomb gap in the spectral density of electrons tunnelling into graphene due to electron-electron interactions

    Statistical Theory for the Kardar-Parisi-Zhang Equation in 1+1 Dimension

    Full text link
    The Kardar-Parisi-Zhang (KPZ) equation in 1+1 dimension dynamically develops sharply connected valley structures within which the height derivative {\it is not} continuous. There are two different regimes before and after creation of the sharp valleys. We develop a statistical theory for the KPZ equation in 1+1 dimension driven with a random forcing which is white in time and Gaussian correlated in space. A master equation is derived for the joint probability density function of height difference and height gradient P(h−hˉ,∂xh,t)P(h-\bar h,\partial_{x}h,t) when the forcing correlation length is much smaller than the system size and much bigger than the typical sharp valley width. In the time scales before the creation of the sharp valleys we find the exact generating function of h−hˉh-\bar h and ∂xh\partial_x h. Then we express the time scale when the sharp valleys develop, in terms of the forcing characteristics. In the stationary state, when the sharp valleys are fully developed, finite size corrections to the scaling laws of the structure functions <(h−hˉ)n(∂xh)m><(h-\bar h)^n (\partial_x h)^m> are also obtained.Comment: 50 Pages, 5 figure
    • …
    corecore