68 research outputs found

    The intrinsic and extrinsic effects of TET proteins during gastrulation

    Get PDF
    Mice deficient for all ten-eleven translocation (TET) genes exhibit early gastrulation lethality. However, separating cause and effect in such embryonic failure is challenging. To isolate cell-autonomous effects of TET loss, we used temporal single-cell atlases from embryos with partial or complete mutant contributions. Strikingly, when developing within a wild-type embryo, Tet-mutant cells retain near-complete differentiation potential, whereas embryos solely comprising mutant cells are defective in epiblast to ectoderm transition with degenerated mesoderm potential. We map de-repressions of early epiblast factors (e.g., Dppa4 and Gdf3) and failure to activate multiple signaling from nascent mesoderm (Lefty, FGF, and Notch) as likely cell-intrinsic drivers of TET loss phenotypes. We further suggest loss of enhancer demethylation as the underlying mechanism. Collectively, our work demonstrates an unbiased approach for defining intrinsic and extrinsic embryonic gene function based on temporal differentiation atlases and disentangles the intracellular effects of the demethylation machinery from its broader tissue-level ramifications

    Immune cell counts and risks of respiratory infections among infants exposed pre- and postnatally to organochlorine compounds: a prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early-life chemical exposure may influence immune system development, subsequently affecting child health. We investigated immunomodulatory potentials of polychlorinated biphenyls (PCBs) and <it>p,p'</it>-DDE in infants.</p> <p>Methods</p> <p>Prenatal exposure to PCBs and <it>p,p'</it>-DDE was estimated from maternal serum concentrations during pregnancy. Postnatal exposure was calculated from concentrations of the compounds in mother's milk, total number of nursing days, and percentage of full nursing each week during the 3 month nursing period. Number and types of infections among infants were registered by the mothers (N = 190). White blood cell counts (N = 86) and lymphocyte subsets (N = 52) were analyzed in a subgroup of infants at 3 months of age.</p> <p>Results</p> <p>Infants with the highest prenatal exposure to PCB congeners CB-28, CB-52 and CB-101 had an increased risk of respiratory infection during the study period. In contrast, the infection odds ratios (ORs) were highest among infants with the lowest prenatal mono-<it>ortho </it>PCB (CB-105, CB-118, CB-156, CB-167) and di-<it>ortho </it>PCB (CB-138, CB-153, CB-180) exposure, and postnatal mono- and di-<it>ortho </it>PCB, and <it>p,p'</it>-DDE exposure. Similar results were found for pre- and postnatal CB-153 exposure, a good marker for total PCB exposure. Altogether, a negative relationship was indicated between infections and total organochlorine compound exposure during the whole pre- and postnatal period. Prenatal exposure to CB-28, CB-52 and CB-101 was positively associated with numbers of lymphocytes and monocytes in infants 3 months after delivery. Prenatal exposure to <it>p,p'</it>-DDE was negatively associated with the percentage of eosinophils. No significant associations were found between PCB and <it>p,p'</it>-DDE exposure and numbers/percentages of lymphocyte subsets, after adjustment for potential confounders.</p> <p>Conclusion</p> <p>This hypothesis generating study suggests that background exposure to PCBs and <it>p,p'</it>-DDE early in life modulate immune system development. Strong correlations between mono- and di-<it>ortho </it>PCBs, and <it>p,p'</it>-DDE exposures make it difficult to identify the most important contributor to the suggested immunomodulation, and to separate effects due to pre- and postnatal exposure. The suggested PCB and <it>p,p'</it>-DDE modulation of infection risks may have consequences for the health development during childhood, since respiratory infections early in life may be risk factors for asthma and middle ear infections.</p

    Anti-inflammatory recombinant TSG-6 stabilizes the progression of focal retinal degeneration in a murine model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inflammatory responses are detected in the retina of patients with age-related macular degeneration and <it>Ccl2<sup>-/-</sup>/Cx3cr1<sup>-/- </sup></it>mice on rd8 background,(<it>Ccl2<sup>-/-</sup>/Cx3cr1<sup>-/- </sup></it>mice) a model that develops progressive age-related macular degeneration-like retinal lesions including focal photoreceptor degeneration, abnormal retinal pigment epithelium and A2E accumulation. Tumor necrosis factor-inducible gene 6 protein is an anti-inflammatory protein and has been shown to improve myocardial infarction outcome and chemically injured cornea in mice by suppressing inflammation. In this study, we evaluated the effect of an intravitreous injection of recombinant TSG-6 on the retinal lesions of <it>Ccl2<sup>-/-</sup>/Cx3cr1<sup>-/- </sup></it>mice.</p> <p>Methods</p> <p>Recombinant TSG-6 (400 ng) was administered by intravitreous injection into the right eye of six-week-old C<it>cl2<sup>-/-</sup>/Cx3cr1<sup>-/- </sup></it>mice. Their left eye was injected with phosphate-buffered saline as a control. Funduscopic pictures were taken before injection and sequentially once a month after injection. The mice were killed two months after injection and the ocular histology examined. Retinal A2E, a major component of lipofuscin, was measured by high performance liquid chromatography. The microarray of ocular mRNA of 92 immunological genes was performed. The genes showing differentiated expression in microarray were further compared between the injected right eye and the contralateral (control) eye by [real-time quantitative reverse transcription polymerase chain reaction] qRT-PCR.</p> <p>Results</p> <p>The continuous monitoring of the fundus for two months showed a slower progression or alleviation of retinal lesions in the treated right eyes as compared with the untreated left eyes. Among 23 pairs of eyes, the lesion levels improved in 78.3%, stayed the same in 8.7% and progressed in 13.0%. Histology confirmed the clinical observation. Even though there was no difference in the level of A2E between the treated and the untreated eyes, microarray analysis of 92 immune genes showed that <it>IL-17a </it>was substantially decreased after the treatment. Expression of <it>TNF-Ξ± </it>showed a similar pattern to <it>IL-17a</it>. The results were consistent in duplicated arrays and confirmed by qRT-PCR.</p> <p>Conclusions</p> <p>We concluded that intravitreous administration of recombinant TSG-6 might stabilize retinal lesions in <it>Ccl2<sup>-/-</sup>/Cx3cr1<sup>-/- </sup></it>mice on rd8 background. Modulation of ocular immunological gene expressions, especially IL-17a, could be one of the mechanisms.</p

    Genetic polymorphism of the iron-regulatory protein-1 and -2 genes in age-related macular degeneration

    Get PDF
    Iron can be involved in the pathogenesis of AMD through the oxidative stress because it may catalyze the Haber–Weiss and Fenton reactions converting hydrogen peroxide to free radicals, which can induce cellular damage. We hypothesized that genetic polymorphism in genes related to iron metabolism may predispose individuals to the development of AMD and therefore we checked for an association between the g.32373708 G>A polymorphism (rs867469) of the IRP1 gene and the g.49520870 G>A (rs17483548) polymorphism of the IRP2 gene and AMD risk as well as the modulation of this association by some environmental and life-style factors. Genotypes were determined in DNA from blood of 269 AMD patients and 116 controls by the allele-specific oligonucleotide-restriction fragment length polymorphism and the polymerase chain reaction-restriction fragment length polymorphism. An association between AMD, dry and wet forms of AMD and the G/G genotype of the g.32373708 G>A-IRP1 polymorphism was found (OR 3.40, 4.15, and 2.75). On the other hand, the G/A genotype reduced the risk of AMD as well as its dry or wet form (OR 0.23, 0.21, 0.26). Moreover, the G allele of the g.49520870 G>A-IRP2 polymorphism increased the risk of the dry form of the disease (OR 1.51) and the A/A genotype and the A allele decreased such risk (OR 0.43 and 0.66). Our data suggest that the g.32373708 G>A-IRP1 and g.49520870 G>A-IRP2 polymorphisms may be associated with increased risk for AMD

    Mechanism of RPE Cell Death in Ξ±-Crystallin Deficient Mice: A Novel and Critical Role for MRP1-Mediated GSH Efflux

    Get PDF
    Absence of Ξ±-crystallins (Ξ±A and Ξ±B) in retinal pigment epithelial (RPE) cells renders them susceptible to oxidant-induced cell death. We tested the hypothesis that the protective effect of Ξ±-crystallin is mediated by changes in cellular glutathione (GSH) and elucidated the mechanism of GSH efflux. In Ξ±-crystallin overexpressing cells resistant to cell death, cellular GSH was >2 fold higher than vector control cells and this increase was seen particularly in mitochondria. The high GSH levels associated with Ξ±-crystallin overexpression were due to increased GSH biosynthesis. On the other hand, cellular GSH was decreased by 50% in murine retina lacking Ξ±A or Ξ±B crystallin. Multiple multidrug resistance protein (MRP) family isoforms were expressed in RPE, among which MRP1 was the most abundant. MRP1 was localized to the plasma membrane and inhibition of MRP1 markedly decreased GSH efflux. MRP1-suppressed cells were resistant to cell death and contained elevated intracellular GSH and GSSG. Increased GSH in MRP1-supressed cells resulted from a higher conversion of GSSG to GSH by glutathione reductase. In contrast, GSH efflux was significantly higher in MRP1 overexpressing RPE cells which also contained lower levels of cellular GSH and GSSG. Oxidative stress further increased GSH efflux with a decrease in cellular GSH and rendered cells apoptosis-prone. In conclusion, our data reveal for the first time that 1) MRP1 mediates GSH and GSSG efflux in RPE cells; 2) MRP1 inhibition renders RPE cells resistant to oxidative stress-induced cell death while MRP1 overexpression makes them susceptible and 3) the antiapoptotic function of Ξ±-crystallin in oxidatively stressed cells is mediated in part by GSH and MRP1. Our findings suggest that MRP1 and Ξ± crystallin are potential therapeutic targets in pathological retinal degenerative disorders linked to oxidative stress

    Mutations in Zebrafish lrp2 Result in Adult-Onset Ocular Pathogenesis That Models Myopia and Other Risk Factors for Glaucoma

    Get PDF
    The glaucomas comprise a genetically complex group of retinal neuropathies that typically occur late in life and are characterized by progressive pathology of the optic nerve head and degeneration of retinal ganglion cells. In addition to age and family history, other significant risk factors for glaucoma include elevated intraocular pressure (IOP) and myopia. The complexity of glaucoma has made it difficult to model in animals, but also challenging to identify responsible genes. We have used zebrafish to identify a genetically complex, recessive mutant that shows risk factors for glaucoma including adult onset severe myopia, elevated IOP, and progressive retinal ganglion cell pathology. Positional cloning and analysis of a non-complementing allele indicated that non-sense mutations in low density lipoprotein receptor-related protein 2 (lrp2) underlie the mutant phenotype. Lrp2, previously named Megalin, functions as an endocytic receptor for a wide-variety of bioactive molecules including Sonic hedgehog, Bone morphogenic protein 4, retinol-binding protein, vitamin D-binding protein, and apolipoprotein E, among others. Detailed phenotype analyses indicated that as lrp2 mutant fish age, many individualsβ€”but not allβ€”develop high IOP and severe myopia with obviously enlarged eye globes. This results in retinal stretch and prolonged stress to retinal ganglion cells, which ultimately show signs of pathogenesis. Our studies implicate altered Lrp2-mediated homeostasis as important for myopia and other risk factors for glaucoma in humans and establish a new genetic model for further study of phenotypes associated with this disease

    Analysis of DLA-DQB1 and polymorphisms in CTLA4 in Cocker spaniels affected with immune-mediated haemolytic anaemia

    Get PDF
    BACKGROUND: Cocker spaniels are predisposed to immune-mediated haemolytic anaemia (IMHA), suggesting that genetic factors influence disease susceptibility. Dog leukocyte antigen (DLA) class II genes encode major histocompatibility complex (MHC) molecules that are involved in antigen presentation to CD4(+) T cells. Several DLA haplotypes have been associated with autoimmune disease, including IMHA, in dogs, and breed specific differences have been identified. Cytotoxic T lymphocyte antigen 4 (CTLA4) is a critical molecule involved in the regulation of T-cell responses. Single nucleotide polymorphisms (SNPs) in the CTLA4 promoter have been shown to be associated with several autoimmune diseases in humans and more recently with diabetes mellitus and hypoadrenocorticism in dogs. The aim of the present study was to investigate whether DLA-DQB1 alleles or CTLA4 promoter variability are associated with risk of IMHA in Cocker spaniels. RESULTS: There were a restricted number of DLA-DQB1 alleles identified, with a high prevalence of DLA-DQB1*007:01 in both groups. A high prevalence of DLA-DQB1 homozygosity was identified, although there was no significant difference between IMHA cases and controls. CTLA4 promoter haplotype diversity was limited in Cocker spaniels, with all dogs expressing at least one copy of haplotype 8. There was no significant difference comparing haplotypes in the IMHA affected group versus control group (p = 0.23). Homozygosity for haplotype 8 was common in Cocker spaniels with IMHA (27/29; 93Β %) and in controls (52/63; 83Β %), with no statistically significant difference in prevalence between the two groups (p = 0.22). CONCLUSIONS: DLA-DQB1 allele and CTLA4 promoter haplotype were not found to be significantly associated with IMHA in Cocker spaniels. Homozygosity for DLA-DQB1*007:01 and the presence of CTLA4 haplotype 8 in Cocker spaniels might increase overall susceptibility to IMHA in this breed, with other genetic and environmental factors involved in disease expression and progression
    • …
    corecore