56,733 research outputs found

    No periodicity revealed for an "eclipsing" ultraluminous supersoft X-ray source in M81

    Full text link
    Luminous supersoft X-ray sources found in the Milky Way and Magellanic Clouds are likely white dwarfs that steadily or cyclically burn accreted matter on their surface, which are promising type Ia supernova progenitors. Observations of distant galaxies with Chandra and XMM-Newton have revealed supersoft sources that are generally hotter and more luminous, including some ultraluminous supersoft sources (ULSs) that are possibly intermediate mass black holes of a few thousand solar masses. In this paper we report our X-ray spectral and timing analysis for M81-ULS1, an ultraluminous supersoft source in the nearby spiral galaxy M81. M81-ULS1 has been persistently supersoft in 17 Chandra ACIS observations spanning six years, and its spectrum can be described by either a kTbb70kT_{bb}\approx70 eV blackbody for a 1.2M\sim1.2M_\odot white dwarf, or a kTin80kT_{in} \approx 80 eV multicolor accretion disk for a 103M\gtrsim10^3M_\odot intermediate mass black hole. In two observations, the light curves exhibited dramatic flux drop/rise on time scales of 10310^3 seconds, reminiscent of eclipse ingress/egress in eclipsing X-ray binaries. However, the exhaustive search for periodicity in the reasonable range of 50 ksec to 50 days failed to reveal an orbital period. The failure to reveal any periodicity is consistent with the long period (30\ge30 yrs) predicted for this system given the optical identification of the secondary with an asymptotic giant star. Also, the eclipse-like dramatic flux changes in hours are hard to explain under the white dwarf model, but can in principle be explained by disk temperature changes induced by accretion rate variations under the intermediate mass black hole model.Comment: 19 pages, 7 figures, 1 table, to appear in ApJ

    Preparation of cluster states and W states with superconducting- quantum-interference-device qubits in cavity QED

    Get PDF
    We propose schemes to create cluster states and W states by many superconducting-quantum-interference-device (SQUID) qubits in cavities under the influence of the cavity decay. Our schemes do not require auxiliary qubits, and the excited levels are only virtually coupled throughout the scheme, which could much reduce the experimental challenge. We consider the cavity decay in our model and analytically demonstrate its detrimental influence on the prepared entangled states.Comment: 6 pages, 3 figures, to appear in Phys. Rev.

    Universal quantum computation with electronic qubits in decoherence-free subspace

    Full text link
    We investigate how to carry out universal quantum computation deterministically with free electrons in decoherence-free subspace by using polarizing beam splitters, charge detectors, and single-spin rotations. Quantum information in our case is encoded in spin degrees of freedom of the electron-pairs which construct a decoherence-free subspace. We design building blocks for two noncommutable single-logic-qubit gates and a logic controlled phase gate, based on which a universal and scalable quantum information processing robust to dephasing is available in a deterministic way.Comment: 14 pages, 3 figure

    Simple scheme for two-qubit Grover search in cavity QED

    Full text link
    Following the proposal by F. Yamaguchi et al.[Phys. Rev. A 66, 010302 (R) (2002)], we present an alternative way to implement the two-qubit Grover search algorithm in cavity QED. Compared with F. Yamaguchi et al.'s proposal, with a strong resonant classical field added, our method is insensitive to both the cavity decay and thermal field, and doesn't require that the cavity remain in the vacuum state throughout the procedure. Moreover, the qubit definitions are the same for both atoms, which makes the experiment easier. The strictly numerical simulation shows that our proposal is good enough to demonstrate a two-qubit Grover's search with high fidelity.Comment: manuscript 10 pages, 2 figures, to appear in Phys. Rev.

    Matrix Product Representation of Locality Preserving Unitaries

    Get PDF
    The matrix product representation provides a useful formalism to study not only entangled states, but also entangled operators in one dimension. In this paper, we focus on unitary transformations and show that matrix product operators that are unitary provides a necessary and sufficient representation of 1D unitaries that preserve locality. That is, we show that matrix product operators that are unitary are guaranteed to preserve locality by mapping local operators to local operators while at the same time all locality preserving unitaries can be represented in a matrix product way. Moreover, we show that the matrix product representation gives a straight-forward way to extract the GNVW index defined in Ref.\cite{Gross2012} for classifying 1D locality preserving unitaries. The key to our discussion is a set of `fixed point' conditions which characterize the form of the matrix product unitary operators after blocking sites. Finally, we show that if the unitary condition is relaxed and only required for certain system sizes, the matrix product operator formalism allows more possibilities than locality preserving unitaries. In particular, we give an example of a simple matrix product operator which is unitary only for odd system sizes, does not preserve locality and carries a `fractional' index as compared to their locality preserving counterparts.Comment: 14 page

    Supersymmetry and the Anomalous Anomalous Magnetic Moment of the Muon

    Get PDF
    The recently reported measurement of the muon's anomalous magnetic moment differs from the standard model prediction by 2.6 standard deviations. We examine the implications of this discrepancy for supersymmetry. Deviations of the reported magnitude are generic in supersymmetric theories. Based on the new result, we derive model-independent upper bounds on the masses of observable supersymmetric particles. We also examine several model frameworks. The sign of the reported deviation is as predicted in many simple models, but disfavors anomaly-mediated supersymmetry breaking.Comment: 4 pages, 4 figures, version to appear in Phys. Rev. Let

    Subwavelength fractional Talbot effect in layered heterostructures of composite metamaterials

    Get PDF
    We demonstrate that under certain conditions, fractional Talbot revivals can occur in heterostructures of composite metamaterials, such as multilayer positive and negative index media, metallodielectric stacks, and one-dimensional dielectric photonic crystals. Most importantly, without using the paraxial approximation we obtain Talbot images for the feature sizes of transverse patterns smaller than the illumination wavelength. A general expression for the Talbot distance in such structures is derived, and the conditions favorable for observing Talbot effects in layered heterostructures is discussed.Comment: To be published in Phys. Rev.
    corecore