64,955 research outputs found

    MCFM for the Tevatron and the LHC

    Get PDF
    A summary is given of the current status of the next-to-leading order (NLO) parton-level integrator MCFM. Some details are given about the Higgs + 2-jet process and the production and decay of ttˉt \bar{t}, both of which have recently been added to the code. Using MCFM, comparisons between the Tevatron running at s=2\sqrt{s}=2~TeV and the LHC running at s=7\sqrt{s}=7~TeV are made for standard model process including the production of Higgs bosons. The case for running the Tevatron until 16fb1^{-1} are accumulated by both detectors is sketched.Comment: Talk presented by R.K Ellis at Loops and Legs in Quantum Field Theory 2010, Woerlitz, Germany, April 25-30, 2010, (6 pages and 4 figures

    QCD corrections to the hadronic production of a heavy quark pair and a W-boson including decay correlations

    Get PDF
    We perform an analytic calculation of the one-loop amplitude for the W-boson mediated process 0 \to d u-bar Q Q-bar l-bar l, retaining the mass for the quark Q. The momentum of each of the massive quarks is expressed as the sum of two massless momenta and the corresponding heavy quark spinor is expressed as a sum of two massless spinors. Using a special choice for the heavy quark spinors we obtain analytic expressions for the one-loop amplitudes which are amenable to fast numerical evaluation. The full next-to-leading order (NLO) calculation of hadron+hadron \to W(\to e nu) b b-bar with massive b-quarks is included in the program MCFM. A comparison is performed with previous published work.Comment: 45 pages, 17 figure

    Sudden Expansion of a One-Dimensional Bose Gas from Power-Law Traps

    Get PDF
    We analyze free expansion of a trapped one-dimensional Bose gas after a sudden release from the confining trap potential. By using the stationary phase and local density approximations, we show that the long-time asymptotic density profile and the momentum distribution of the gas are determined by the initial distribution of Bethe rapidities (quasimomenta) and hence can be obtained from the solutions to the Lieb-Liniger equations in the thermodynamic limit. For expansion from a harmonic trap, and in the limits of very weak and very strong interactions, we recover the self-similar scaling solutions known from the hydrodynamic approach. For all other power-law traps and arbitrary interaction strengths, the expansion is not self-similar and shows strong dependence of the density profile evolution on the trap anharmonicity. We also characterize dynamical fermionization of the expanding cloud in terms of correlation functions describing phase and density fluctuations.Comment: Final published version with modified title and a couple of other minor changes. 5 pages, 2 figures, and Supplemental Materia

    Time- and frequency-domain polariton interference

    Full text link
    We present experimental observations of interference between an atomic spin coherence and an optical field in a {\Lambda}-type gradient echo memory. The interference is mediated by a strong classical field that couples a weak probe field to the atomic coherence through a resonant Raman transition. Interference can be observed between a prepared spin coherence and another propagating optical field, or between multiple {\Lambda} transitions driving a single spin coherence. In principle, the interference in each scheme can yield a near unity visibility.Comment: 11 pages, 5 figure

    Comment on ``Ground State Phase Diagram of a Half-Filled One-Dimensional Extended Hubbard Model''

    Full text link
    In Phys. Rev. Lett. 89, 236401 (2002), Jeckelmann argued that the recently discovered bond-order-wave (BOW) phase of the 1D extended Hubbard model does not have a finite extent in the (U,V) plane, but exists only on a segment of a first-order SDW-CDW phase boundary. We here present quantum Monte Carlo result of higher precision and for larger system sizes than previously and reconfirm that the BOW phase does exist a finite distance away from the phase boundary, which hence is a BOW-CDW transition curve.Comment: 1 page, 1 figure, v2: final published versio

    High efficiency coherent optical memory with warm rubidium vapour

    Get PDF
    By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require optical memory as do deterministic logic gates for optical quantum computing. In this paper we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory. We also show storage recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory

    Electrophoretic deposition of gradated oxidation resistant coatings on tantalum-10 tungsten alloy

    Get PDF
    Material selection and electrophoretic deposition studies of high temperature oxidation resistant coatings on tantalum-10 tungsten allo
    corecore