8,316 research outputs found
Morphology of the recently re-classified Tasman masked booby (Sula dactylatra tasmani) breeding on the Kermadec Islands
Once thought to be extinct, the Tasman Booby Sula tasmani has recently been re-classified as a subspecies of the Masked Booby S. dactylatra on the basis of genetic data. This re-classification raises the issue of whether this novel clade has a distinct morphology. Morphological differences in size, as well as coloration of integuments, bill and iris have been found in other subspecies of the Masked Booby but have not yet been reported for live Kermadec Islands breeding individuals. Museum specimens from this breeding location have been separated from other Pacific breeding subspecies by their longer wings. We sampled a total of 21 individuals from North Meyer Islet, Kermadec Group, New
Zealand, and applied molecular sexing to obtain sex-specific morphometric measurements. We matched dimorphism in vocalization with genetic sexing results and photographic documentation of human-assessed bill, foot and eye coloration. While culmen measurements were consistent with reports from museum specimens, wing chords from living specimens of Tasman Masked Boobies were 3% and 4% larger in males and females, respectively. Females had larger culmens and wings than males, consistent with the low extent of sexual dimorphism reported from museum skins. Adult Tasman Masked Boobies had yellow to buff-yellow feet, while fledglings, as in most sulids, had grey
to greyish-yellow feet. Our findings confirm the distinctively long wing and particular iris coloration previously reported for the taxon and provide the first description of integument coloration of live specimens. This study highlights the importance of including in situ assessment in taxon descriptions
Recolonization of Raoul Island by Kermadec red-crowned parakeets Cyanoramphus novaezelandiae cyanurus after eradication of invasive predators, Kermadec Islands archipelago, New Zealand
The Kermadec red-crowned parakeet Cyanoramphus novaezelandiae was driven to extinction on Raoul Island over 150 years ago by introduced cats Felis catus and rats (Rattus norvegicus and R. exulans). These predators were eradicated from the island (2,938 ha) between 2002-04 during the world’s largest multispecies eradication project. In 2008 we documented a unique recolonisation event when parakeets were observed to have returned to Raoul, presumably from a nearby island group, The Herald Islets (51 ha). We captured and aged 100 parakeets, of which 44% were born in 2008, and breeding was observed on Raoul Island. This represents the first evidence of nesting of this species on Raoul Island since 1836. Our findings highlight the global conservation potential for island avifaunas by prioritising eradication areas through consideration of proximity of remnant populations to target management locations, instead of the classical translocation approach alone. The natural recolonization of parakeets on Raoul Island from a satellite source population is to our knowledge, a first for parrot conservation and the first documented population expansion and island recolonization of a parrot species after removal of invasive predators
SARS-CoV-2 antibodies detected in human breast milk postvaccination
Importance The SARS-CoV-2 pandemic has infected over a hundred million people worldwide, with almost 2.5 million deaths at the date of this publication. In the United States, Pfizer-BioNTech and Moderna vaccines were first administered to the public starting in December 2020, and no lactating women were included in the initial trials of safety/efficacy. Research on SARS-CoV-2 vaccination in lactating women and the potential transmission of passive immunity to the infant through breast milk is needed to guide patients, clinicians and policy makers during the worldwide effort to curb the spread of this virus. Objective To determine whether SARS-CoV-2 specific immunoglobins are found in breast milk post-vaccination, and to characterize the time course and types of immunoglobulins present. Design Prospective cohort study Setting Providence Portland Medical Center, Oregon, USA Participants Six lactating women who planned to receive both doses of the Pfizer-BioNTech or Moderna vaccine between December 2020 and January 2021. Breast milk samples were collected pre-vaccination and at 11 additional timepoints, with last sample at 14 days post 2nd dose of vaccine. Exposure Two doses of Pfizer-BioNTech or Moderna SARS-CoV-2 vaccine. Main Outcome(s) and Measure(s) Levels of SARS-CoV-2 specific IgA and IgG immunoglobulins in breast milk. Results In this cohort of 6 lactating women who received 2 doses of SARS-CoV-2 vaccine, we observed significantly elevated levels of SARS-CoV-2 specific IgG and IgA antibodies in breast milk beginning at Day 7 after the initial vaccine dose, with an IgG-dominant response. Conclusions and Relevance We are the first to show that maternal vaccination results in SARS-CoV-2 specific immunoglobulins in breast milk that may be protective for infants. Competing Interest Statement The authors have declared no competing interest. Funding Statement This work was supported by generous grants from Nancy Lematta (BAF) and the Chiles Foundation (BAF)
Demixing of aqueous polymer two-phase systems in low gravity
When polymers such as dextran and poly(ethylene glycol) are mixed in aqueous solution biphasic systems often form. On Earth the emulsion formed by mixing the phases rapidly demixes because of phase density differences. Biological materials can be purified by selective partitioning between the phases. In the case of cells and other particulates the efficiency of these separations appears to be somewhat compromised by the demixing process. To modify this process and to evaluate the potential of two-phase partitioning in space, experiments on the effects of gravity on phase emulsion demixing were undertaken. The behavior of phase systems with essentially identical phase densities was studied at one-g and during low-g parabolic aircraft maneuvers. The results indicate the demixing can occur rather rapidly in space, although more slowly than on Earth. The demixing process was examined from a theoretical standpoint by applying the theory of Ostwald ripening. This theory predicts demizing rates many orders of magnitude lower than observed. Other possible demixing mechanisms are considered
Electric Field Effects on Photoluminescence-Detected Magnetic Resonance of a π-Conjugated Polymer
Electric fields are central to the operation of optoelectronic devices based on conjugated polymers as they drive the recombination of electrons and holes to excitons in organic light-emitting diodes but are also responsible for the dissociation of excitons in solar cells. One way to track the microscopic effect of electric fields on charge carriers formed under illumination of a polymer film is to exploit the fluorescence arising from delayed recombination of carrier pairs, a process which is fundamentally spin dependent. Such spin-dependent recombination can be probed directly in fluorescence, by optically detected magnetic resonance (ODMR). It is found that the ODMR signal in a polymer film is quenched in an electric field in the absence of a current, but that, at fields exceeding 1 MV cm(-1), this quenching saturates at a level of at most 50%
Stem Anatomy of Switchgrass Plants Developed by Divergent Breeding Cycles for Tiller Digestibility
Switchgrass (Panicum virgatum. L.) is an important perennial forage and biomass crop that is native to the temperate prairies of the North America east of the Rocky Mountains. Breeding for improved forage in vitro dry matter digestibility (IVDMD) has been conducted using post-heading, whole-tiller IVDMD as the selection criterion (Hopkins et al., 1993; Vogel et al., 2002). One breeding cycle (C-1) for low IVDMD and three cycles for high IVDMD (C1, C2, C3) were completed in a switchgrass population adapted to the USA mid- latitudes. Sward trials demonstrated that whole plant IVDMD had been improved (Hopkins et al., 1993). This study reports on changes in plant anatomy of plants from populations divergently bred for whole tiller IVDMD
Named Entity Recognition for early-modern textual sources: a review of capabilities and challenges with strategies for the future
Purpose: By mapping-out the capabilities, challenges and limitations of named-entity recognition (NER), this article aims to synthesise the state of the art of NER in the context of the early modern research field and to inform discussions about the kind of resources, methods and directions that may be pursued to enrich the application of the technique going forward. // Design/methodology/approach: Through an extensive literature review, this article maps out the current capabilities, challenges and limitations of NER and establishes the state of the art of the technique in the context of the early modern, digitally augmented research field. It also presents a new case study of NER research undertaken by Enlightenment Architectures: Sir Hans Sloane's Catalogues of his Collections (2016–2021), a Leverhulme funded research project and collaboration between the British Museum and University College London, with contributing expertise from the British Library and the Natural History Museum. // Findings: Currently, it is not possible to benchmark the capabilities of NER as applied to documents of the early modern period. The authors also draw attention to the situated nature of authority files, and current conceptualisations of NER, leading them to the conclusion that more robust reporting and critical analysis of NER approaches and findings is required. // Research limitations/implications: This article examines NER as applied to early modern textual sources, which are mostly studied by Humanists. As addressed in this article, detailed reporting of NER processes and outcomes is not necessarily valued by the disciplines of the Humanities, with the result that it can be difficult to locate relevant data and metrics in project outputs. The authors have tried to mitigate this by contacting projects discussed in this paper directly, to further verify the details they report here. // Practical implications: The authors suggest that a forum is needed where tools are evaluated according to community standards. Within the wider NER community, the MUC and ConLL corpora are used for such experimental set-ups and are accompanied by a conference series, and may be seen as a useful model for this. The ultimate nature of such a forum must be discussed with the whole research community of the early modern domain. // Social implications: NER is an algorithmic intervention that transforms data according to certain rules-, patterns- or training data and ultimately affects how the authors interpret the results. The creation, use and promotion of algorithmic technologies like NER is not a neutral process, and neither is their output A more critical understanding of the role and impact of NER on early modern documents and research and focalization of some of the data- and human-centric aspects of NER routines that are currently overlooked are called for in this paper. // Originality/value: This article presents a state of the art snapshot of NER, its applications and potential, in the context of early modern research. It also seeks to inform discussions about the kinds of resources, methods and directions that may be pursued to enrich the application of NER going forward. It draws attention to the situated nature of authority files, and current conceptualisations of NER, and concludes that more robust reporting of NER approaches and findings are urgently required. The Appendix sets out a comprehensive summary of digital tools and resources surveyed in this article
- …