18,431 research outputs found
Tau polarization effects in the CNGS tau-neutrino appearance experiments
We studied tau polarization effects on the decay distributions of tau
produced in the CNGS tau-neutrino appearance experiments. We show that energy
and angular distributions for the decay products in the laboratory frame are
significantly affected by the tau polarization. Rather strong azimuthal
asymmetry about the tau momentum axis is predicted, which may have observable
consequences in experiments even with small statistics.Comment: 5 pages, 6 eps figures, espcrc2.sty; Proceedings of the 4th
International Workshop on Neutrino-Nucleus Interactions in the Few GeV Region
(NuInt05), September 26-29, 2005, Okayama, Japa
Spontaneous Flavor and Parity Breaking with Wilson Fermions
We discuss the phase diagram of Wilson fermions in the -- plane for
two-flavor QCD. We argue that, as originally suggested by Aoki, there is a
phase in which flavor and parity are spontaneously broken. Recent numerical
results on the spectrum of the overlap Hamiltonian have been interpreted as
evidence against Aoki's conjecture. We show that they are in fact consistent
with the presence of a flavor-parity broken ``Aoki phase''. We also show how,
as the continuum limit is approached, one can study the lattice theory using
the continuum chiral Lagrangian supplemented by additional terms proportional
to powers of the lattice spacing. We find that there are two possible phase
structures at non-zero lattice spacing: (1) there is an Aoki phase of width
with two massless Goldstone pions; (2) there is no
symmetry breaking, and all three pions have an equal non-vanishing mass of
order . Present numerical evidence suggests that the former option is
realized for Wilson fermions. Our analysis then predicts the form of the pion
masses and the flavor-parity breaking condensate within the Aoki phase. Our
analysis also applies for non-perturbatively improved Wilson fermions.Comment: 22 pages, LaTeX, 5 figures (added several references and a comment
Nucleon-nucleon interactions via Lattice QCD: Methodology --HAL QCD approach to extract hadronic interactions in lattice QCD--
We review the potential method in lattice QCD, which has recently been
proposed to extract nucleon-nucleon interactions via numerical simulations. We
focus on the methodology of this approach by emphasizing the strategy of the
potential method, the theoretical foundation behind it, and special numerical
techniques. We compare the potential method with the standard finite volume
method in lattice QCD, in order to make pros and cons of the approach clear. We
also present several numerical results for the nucleon-nucleon potentials.Comment: 12 pages, 10 figure
Backward Clusters, Hierarchy and Wild Sums for a Hard Sphere System in a Low-Density Regime
We study the statistics of backward clusters in a gas of hard spheres at low
density. A backward cluster is defined as the group of particles involved
directly or indirectly in the backwards-in-time dynamics of a given tagged
sphere. We derive upper and lower bounds on the average size of clusters by
using the theory of the homogeneous Boltzmann equation combined with suitable
hierarchical expansions. These representations are known in the easier context
of Maxwellian molecules (Wild sums). We test our results with a numerical
experiment based on molecular dynamics simulations
Two-dimensional Lattice Gross-Neveu Model with Wilson Fermion Action at Finite Temperature and Chemical Potential
We investigate the phase structure of the two-dimensional lattice Gross-Neveu
model formulated with the Wilson fermion action to leading order of 1/N
expansion. Structural change of the parity-broken phase under the influence of
finite temperature and chemical potential is studied. The connection between
the lattice phase structure and the chiral phase transition of the continuum
theory is clarified.Comment: 42 pages, 20 EPS figures, using REVTe
Green's Function for Nonlocal Potentials
The single-particle nuclear potential is intrinsically nonlocal. In this
paper, we consider nonlocalities which arise from the many-body and fermionic
nature of the nucleus. We investigate the effects of nonlocality in the nuclear
potential by developing the Green's function for nonlocal potentials. The
formal Green's function integral is solved analytically in two different limits
of the wavelength as compared to the scale of nonlocality. Both results are
studied in a quasi-free limit. The results illuminate some of the basic effects
of nonlocality in the nuclear medium.Comment: Accepted for publication in J. Phys.
Non-perturbative renormalization of quark mass in Nf=2+1 QCD with the Schroedinger functional scheme
We present an evaluation of the quark mass renormalization factor for Nf=2+1
QCD. The Schroedinger functional scheme is employed as the intermediate scheme
to carry out non-perturbative running from the low energy region, where
renormalization of bare mass is performed on the lattice, to deep in the high
energy perturbative region, where the conversion to the renormalization group
invariant mass or the MS-bar scheme is safely carried out. For numerical
simulations we adopted the Iwasaki gauge action and non-perturbatively improved
Wilson fermion action with the clover term. Seven renormalization scales are
used to cover from low to high energy regions and three lattice spacings to
take the continuum limit at each scale. The regularization independent step
scaling function of the quark mass for the Nf=2+1 QCD is obtained in the
continuum limit. Renormalization factors for the pseudo scalar density and the
axial vector current are also evaluated for the same action and the bare
couplings as two recent large scale Nf=2+1 simulations; previous work of the
CP-PACS/JLQCD collaboration, which covered the up-down quark mass range heavier
than MeV and that of PACS-CS collaboration for much lighter
quark masses down to MeV. The quark mass renormalization factor is
used to renormalize bare PCAC masses in these simulations.Comment: 26 pages, 17 Postscript figures. Two tables are update
- …