8,593 research outputs found

    The applicability of MFD thrusters to satellite power systems

    Get PDF
    The high power self field MPD thruster uses electromagnetic forces rather than electrostatic to accelerate a neutral plasma. The most attractive application of MPD thrusters to satellite power systems is in the area of electric propulsion for a cargo orbit transfer vehicle (COTV). Calculations were performed in order to compare the performance of a COTV using an ion or MPD propulsion system. Results show that the MPD propulsion system gives a shorter trip time with the same power and payload when compared to the ion thruster propulsion system at either value of specific impulse. More important than the trip time benefit may be the advantage a MPD propulsion system provides in system simplicity. Another interesting COTV concept using MPD thrusters is the use of a remote power supply located on the Earth, at GEO, or somewhere in between to transmit power to the COTV in a microwave transmission. The specific impulse at thrust levels of tens of newtons makes a MPD propulsion system a candidate for stationkeeping and attitude control of large space structures such as a SPS

    Plume Characterization of a One-Millipound Solid Teflon Pulsed Plasma Thruster, Phase 2

    Get PDF
    Measurements of the pulsed plasma thruster (PPT) plume upstream mass flux were made in the Molecular Sink (MOLSINK) vacuum facility in order to minimize the plume-tank wall reflected mass flux. Using specially designed collimators on 4 rows of Quartz Crystal Microbalanced (QCMs) mounted on a support extending radially away from the plume axis, measurements were made of the mass flux originating in a thin slice of the PPT primary plume at an arbitrary dip angle with respect to the thruster axis. The measured and analytically corrected mass flux from particles reflected from the MOLSINK walls was substracted from the collimated QCM measurements to improve their accuracy. These data were then analytically summed over dip angle to estimate the total plume backflow upstream of the thruster nozzle. The results indicate that the PPT backflow is of order 10 to the minus 10th power g/square cm/pulse in the region from 38 to 86 cm from the PPT axis in the nozzle exit plane. This flux drops with the square of the radial distance from the PPT axis and is comparable to the backflow of an 8 cm ion thruster, which has performance characteristics similar to those of the PPT

    Particle alignments and shape change in 66^{66}Ge and 68^{68}Ge

    Full text link
    The structure of the N≈ZN \approx Z nuclei 66^{66}Ge and 68^{68}Ge is studied by the shell model on a spherical basis. The calculations with an extended P+QQP+QQ Hamiltonian in the configuration space (2p3/22p_{3/2}, 1f5/21f_{5/2}, 2p1/22p_{1/2}, 1g9/21g_{9/2}) succeed in reproducing experimental energy levels, moments of inertia and QQ moments in Ge isotopes. Using the reliable wave functions, this paper investigates particle alignments and nuclear shapes in 66^{66}Ge and 68^{68}Ge. It is shown that structural changes in the four sequences of the positive- and negative-parity yrast states with even JJ and odd JJ are caused by various types of particle alignments in the g9/2g_{9/2} orbit. The nuclear shape is investigated by calculating spectroscopic QQ moments of the first and second 2+2^+ states, and moreover the triaxiality is examined by the constrained Hatree-Fock method. The changes of the first band crossing and the nuclear deformation depending on the neutron number are discussed.Comment: 18 pages, 21 figures; submitted to Phys. Rev.

    Gauge Orbit Types for Theories with Classical Compact Gauge Group

    Full text link
    We determine the orbit types of the action of the group of local gauge transformations on the space of connections in a principal bundle with structure group O(n), SO(n) or Sp(n)Sp(n) over a closed, simply connected manifold of dimension 4. Complemented with earlier results on U(n) and SU(n) this completes the classification of the orbit types for all classical compact gauge groups over such space-time manifolds. On the way we derive the classification of principal bundles with structure group SO(n) over these manifolds and the Howe subgroups of SO(n).Comment: 57 page

    A note on the realignment criterion

    Get PDF
    For a quantum state in a bipartite system represented as a density matrix, researchers used the realignment matrix and functions on its singular values to study the separability of the quantum state. We obtain bounds for elementary symmetric functions of singular values of realignment matrices. This answers some open problems proposed by Lupo, Aniello, and Scardicchio. As a consequence, we show that the proposed scheme by these authors for testing separability would not work if the two subsystems of the bipartite system have the same dimension.Comment: 11 pages, to appear in Journal of Physics A: Mathematical and Theoretica

    Further results on the cross norm criterion for separability

    Full text link
    In the present paper the cross norm criterion for separability of density matrices is studied. In the first part of the paper we determine the value of the greatest cross norm for Werner states, for isotropic states and for Bell diagonal states. In the second part we show that the greatest cross norm criterion induces a novel computable separability criterion for bipartite systems. This new criterion is a necessary but in general not a sufficient criterion for separability. It is shown, however, that for all pure states, for Bell diagonal states, for Werner states in dimension d=2 and for isotropic states in arbitrary dimensions the new criterion is necessary and sufficient. Moreover, it is shown that for Werner states in higher dimensions (d greater than 2), the new criterion is only necessary.Comment: REVTeX, 19 page

    Qubit-portraits of qudit states and quantum correlations

    Full text link
    The machinery of qubit-portraits of qudit states, recently presented, is consider here in more details in order to characterize the presence of quantum correlations in bipartite qudit states. In the tomographic representation of quantum mechanics, Bell-like inequalities are interpreted as peculiar properties of a family of classical joint probability distributions which describe the quantum state of two qudits. By means of the qubit-portraits machinery a semigroup of stochastic matrices can be associated to a given quantum state. The violation of the CHSH inequalities is discussed in this framework with some examples, we found that quantum correlations in qutrit isotropic states can be detected by the suggested method while it cannot in the case of qutrit Werner states.Comment: 12 pages, 4 figure

    Cluster Production in Quark-Hadron Phase Transition

    Full text link
    The problem of cluster formation and growth in first-order quark-hadron phase transition in heavy-ion collisions is considered. Behaving as Brownian particles, the clusters carry out random walks and can encounter one another, leading to coalescence and breakup. A simulation of the process in cellular automaton suggests the possibility of a scaling distribution in the cluster sizes. The experimental determination of the cluster-size distribution is urged as a means to find a clear signature of phase transition.Comment: 12 pages + 1 figure. Report # OITS-517. To be published in Phys. Rev. Lett. 71, xxx (1994

    Mutual first order coherence of phase-locked lasers

    Full text link
    We argue that (first-order) coherence is a relative, and not an absolute, property. It is shown how feedforward or feedback can be employed to make two (or more) lasers relatively coherent. We also show that after the relative coherence is established, the two lasers will stay relatively coherent for some time even if the feedforward or feedback loop has been turned off, enabling, e.g., demonstration of unconditional quantum teleportation using lasers.Comment: 9 pages, 6 figure
    • 

    corecore