6,871 research outputs found

    Immunological Responses to Total Hip Arthroplasty

    Get PDF
    The use of total hip arthroplasties (THA) has been continuously rising to meet the demands of the increasingly ageing population. To date, this procedure has been highly successful in relieving pain and restoring the functionality of patients’ joints, and has significantly improved their quality of life. However, these implants are expected to eventually fail after 15–25 years in situ due to slow progressive inflammatory responses at the bone-implant interface. Such inflammatory responses are primarily mediated by immune cells such as macrophages, triggered by implant wear particles. As a result, aseptic loosening is the main cause for revision surgery over the mid and long-term and is responsible for more than 70% of hip revisions. In some patients with a metal-on-metal (MoM) implant, metallic implant wear particles can give rise to metal sensitivity. Therefore, engineering biomaterials, which are immunologically inert or support the healing process, require an in-depth understanding of the host inflammatory and wound-healing response to implanted materials. This review discusses the immunological response initiated by biomaterials extensively used in THA, ultra-high-molecular-weight polyethylene (UHMWPE), cobalt chromium (CoCr), and alumina ceramics. The biological responses of these biomaterials in bulk and particulate forms are also discussed. In conclusion, the immunological responses to bulk and particulate biomaterials vary greatly depending on the implant material types, the size of particulate and its volume, and where the response to bulk forms of differing biomaterials are relatively acute and similar, while wear particles can initiate a variety of responses such as osteolysis, metal sensitivity, and so on

    High-temperature terahertz optical diode effect without magnetic order in polar FeZnMo3_3O8_8

    Full text link
    We present a terahertz spectroscopic study of polar ferrimagnet FeZnMo3_3O8_8. Our main finding is a giant high-temperature optical diode effect, or nonreciprocal directional dichroism, where the transmitted light intensity in one direction is over 100 times lower than intensity transmitted in the opposite direction. The effect takes place in the paramagnetic phase with no long-range magnetic order in the crystal, which contrasts sharply with all existing reports of the terahertz optical diode effect in other magnetoelectric materials, where the long-range magnetic ordering is a necessary prerequisite. In \fzmo, the effect occurs resonantly with a strong magnetic dipole active transition centered at 1.27 THz and assigned as electron spin resonance between the eigenstates of the single-ion anisotropy Hamiltonian. We propose that the optical diode effect in paramagnetic FeZnMo3_3O8_8 is driven by signle-ion terms in magnetoelectric free energy

    CPU-GPU hybrid parallel binomial American option pricing

    Get PDF
    We present in this paper a novel parallel binomial algorithm that computes the price of an American option. The algorithm partitions a binomial tree constructed for the pricing into blocks of multiple levels of nodes, and assigns each such block to multiple processors. Each of the processors then computes the option's values at its assigned nodes in two phases. The algorithm is implemented and tested on a heterogeneous system consisting of an Intel multi-core processor and a NVIDIA GPU. The whole task is split and divided over and the CPU and GPU so that the computations are performed on the two processors simultaneously. In the hybrid processing, the GPU is always assigned the last part of a block, and makes use of a couple of buffers in the on-chip shared memory to reduce the number of accesses to the off-chip device memory. The performance of the hybrid processing is compared with an optimised CPU serial code, a CPU parallel implementation and a GPU standalone program.published_or_final_versio

    Simulation and analysis of in vitro DNA evolution

    Full text link
    We study theoretically the in vitro evolution of a DNA sequence by binding to a transcription factor. Using a simple model of protein-DNA binding and available binding constants for the Mnt protein, we perform large-scale, realistic simulations of evolution starting from a single DNA sequence. We identify different parameter regimes characterized by distinct evolutionary behaviors. For each regime we find analytical estimates which agree well with simulation results. For small population sizes, the DNA evolutional path is a random walk on a smooth landscape. While for large population sizes, the evolution dynamics can be well described by a mean-field theory. We also study how the details of the DNA-protein interaction affect the evolution.Comment: 11 pages, 11 figures. Submitted to PNA

    Multiplpe Choice Minority Game With Different Publicly Known Histories

    Full text link
    In the standard Minority Game, players use historical minority choices as the sole public information to pick one out of the two alternatives. However, publishing historical minority choices is not the only way to present global system information to players when more than two alternatives are available. Thus, it is instructive to study the dynamics and cooperative behaviors of this extended game as a function of the global information provided. We numerically find that although the system dynamics depends on the kind of public information given to the players, the degree of cooperation follows the same trend as that of the standard Minority Game. We also explain most of our findings by the crowd-anticrowd theory.Comment: Extensively revised, to appear in New J Phys, 7 pages with 4 figure

    Optimization of supercritical fluid extraction of phytosterol from roselle seeds with a central composite design model.

    Get PDF
    Recovery of phytosterol from roselle (Hibiscus sabdariffa L.) seeds via supercritical carbon dioxide extraction modified with ethanol was investigated at pressures of 200–400 bar, temperatures from 40 to 80 ◦C and at supercritical fluid flow rates from 10 to 20 ml/min. It was found that an entrainer such as ethanol could enhance the solubility and extraction yield of roselle seed oil from the seed matrix, compared to values obtained using supercritical CO2. After a typical run (holding period of 30 min, continuous flow extraction of 3 h), the results indicate that the oil recovery was optimal with a recovery of 108.74% and a phytosterol composition of 7262.80mgkg−1 at relatively low temperature of 40 ◦C, a high pressure of 400 bar and at a high supercritical fluid flow rate of 20 ml/min in the presence of 2 ml/min EtOH as entrainer. The solubility of roselle seed oil increased with temperature at the operating pressures of 200, 300 and 400 bar. Supercritical fluid extraction involved a short extraction time and the minimal usage of small amounts of entrainer in the CO2

    Using web 2.0 tools to enhance learning in higher education: A case study in technological education

    Get PDF
    Pedagogy with Web 2.0 technologies is shown to facilitate the teaching-learning process through content sharing and idea collaboration. In this paper, we explore the possibility of using social networking tools, to support teaching practice in technological courses. In our study, we utilized i) Facebook Page as a platform to share content, experiences and news of a general engineering course, and ii) blog as a collaborative writing tool to express thoughts and opinions in a common core (general education) course. After our one-semester (three- months) study, we found that Facebook Page is an easy-to- use and familiar tool for students to share and exchange ideas among classmates, peers and public.published_or_final_versio

    A concurrent error detection based fault-tolerant 32 nm XOR-XNOR circuit implementation

    Get PDF
    As modern processors and semiconductor circuits move into 32 nm technologies and below, designers face the major problem of process variations. This problem makes designing VLSI circuits harder and harder, affects the circuit performance and introduces faults that can cause critical failures. Therefore, fault-tolerant design is required to obtain the necessary level of reliability and availability especially for safety-critical systems. Since XOR-XNOR circuits are basic building blocks in various digital and mixed systems, especially in arithmetic circuits, these gates should be designed such that they indicate any malfunction during normal operation. In fact, this property of verifying the results delivered by a circuit during its normal operation is called Concurrent Error Detection (CED). In this paper, we propose a CED based fault- tolerant XOR-XNOR circuit implementation. The proposed design is performed using the 32 nm process technology.published_or_final_versio

    H_2 fluorescence spectrum from 1200 to 1700 Å by electron impact: Laboratory study and application to Jovian aurora

    Get PDF
    A combined experimental study of the fluorescence spectrum of H_2 at wavelengths of 1200-1700 Å by electron impact and its application to modeling the Jovian aurora have been carried out. Our laboratory data suggest that at 100 eV the relative cross sections for direct excitation of Lyɑ, Lyman bands (B^1Σ_u^+-X^1Σ_g^+), and Werner bands (C^1π_u-X^1Σ_g^+) are 1, 2.3±0.6, and 2.6±0.5, respectively, in conflict with Stone and Zipfs (1972) results for the Werner bands. Cascade from E,F^1Σ_g^+ states contributes an additional 31% to the B^1Σ_u^+ state population. It is shown that the most likely fate for the metastable H(2^2S) atoms produced in the Jovian aurora is collisional quenching to H(2^2P), and this could add as much as 60% to the predicted Lyɑ emission. On the basis of detailed atmospheric and radiative transfer modeling, we conclude that the recent IUE and Voyager observations are consistent with precipitation of electrons with energy in the range of 1-30 keV or other energetic particles that penetrate to number densities of 4 X 10^(10)-5 X 10^(13) cm^(-3) or column densities of 5 X 10^(17)-2 X 10^(20) cm^(-2) in the atmosphere. The globally averaged energy flux and production of hydrogen atoms are 0.5-2 ergs cm^(-2) s^(-1) and 1-4 X 10^(10) atoms cm^(-2) s^(-1), respectively
    corecore