81 research outputs found

    Ytterbium triflate (and trimethylsilyl triflate) catalyzed isomerization of glycidic esters to α-hydroxy-β,γ-unsaturated esters and their conversion into cyclopentanoids using Johnson-Claisen rearrangement

    Get PDF
    A variety of glycidic esters undergo smooth isomerization to the corresponding α-hydroxy-β, γ-unsaturated esters upon reaction with Yb(OTf)3 or TMSOTf. These α-hydroxy-β, γ-unsaturated esters undergo Johnson-Claisen rearrangement to appropriately substituted diesters, some of which are converted into cyclopentanoids

    Safety, efficacy and glucose turnover of reduced prandial boluses during closed-loop therapy in adolescents with type 1 diabetes: a randomized clinical trial.

    Get PDF
    AIMS: To evaluate safety, efficacy and glucose turnover during closed-loop with meal announcement using reduced prandial insulin boluses in adolescents with type 1 diabetes (T1D). METHODS: We conducted a randomized crossover study comparing closed-loop therapy with standard prandial insulin boluses versus closed-loop therapy with prandial boluses reduced by 25%. Eight adolescents with T1D [3 males; mean (standard deviation) age 15.9 (1.5) years, glycated haemoglobin 74 (17) mmol/mol; median (interquartile range) total daily dose 0.9 (0.7, 1.1) IU/kg/day] were studied on two 36-h-long visits. In random order, subjects received closed-loop therapy with either standard or reduced insulin boluses administered with main meals (50-80 g carbohydrates) but not with snacks (15-30 g carbohydrates). Stable-label tracer dilution methodology measured total glucose appearance (Ra_total) and glucose disposal (Rd). RESULTS: The median (interquartile range) time spent in target (3.9-10 mmol/l) was similar between the two interventions [74 (66, 84)% vs 80 (65, 96)%; p = 0.87] as was time spent above 10 mmol/l [21.8 (16.3, 33.5)% vs 18.0 (4.1, 34.2)%; p = 0.87] and below 3.9 mmol/l [0 (0, 1.5)% vs 0 (0, 1.8)%; p = 0.88]. Mean plasma glucose was identical during the two interventions [8.4 (0.9) mmol/l; p = 0.98]. Hypoglycaemia occurred once 1.5 h post-meal during closed-loop therapy with standard bolus. Overall insulin delivery was lower with reduced prandial boluses [61.9 (55.2, 75.0) vs 72.5 (63.6, 80.3) IU; p = 0.01] and resulted in lower mean plasma insulin concentration [186 (171, 260) vs 252 (198, 336) pmol/l; p = 0.002]. Lower plasma insulin was also documented overnight [160 (136, 192) vs 191 (133, 252) pmol/l; p = 0.01, pooled nights]. Ra_total was similar [26.3 (21.9, 28.0) vs 25.4 (21.0, 29.2) µmol/kg/min; p = 0.19] during the two interventions as was Rd [25.8 (21.0, 26.9) vs 25.2 (21.2, 28.8) µmol/kg/min; p = 0.46]. CONCLUSIONS: A 25% reduction in prandial boluses during closed-loop therapy maintains similar glucose control in adolescents with T1D whilst lowering overall plasma insulin levels. It remains unclear whether closed-loop therapy with a 25% reduction in prandial boluses would prevent postprandial hypoglycaemia.US National Institute of Diabetes and Digestive and Kidney Diseases (1R01DK085621). Support for the Artificial Pancreas research programme by the JDRF, Diabetes UK, NIHR Cambridge Biomedical Research Centre, and Wellcome Trust Strategic Award (100574/Z/12/Z) is acknowledged.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1111/dom.1254

    Safety and efficacy of 24-h closed-loop insulin delivery in well-controlled pregnant women with type 1 diabetes: a randomized crossover case series

    Get PDF
    OBJECTIVE: To evaluate the safety and efficacy of closed-loop insulin delivery in well-controlled pregnant women with type 1 diabetes treated with continuous subcutaneous insulin infusion (CSII). RESEARCH DESIGN AND METHODS: A total of 12 women with type 1 diabetes (aged 32.9 years, diabetes duration 17.6 years, BMI 27.1 kg/m(2), and HbA(1c) 6.4%) were randomly allocated to closed-loop or conventional CSII. They performed normal daily activities (standardized meals, snacks, and exercise) for 24 h on two occasions at 19 and 23 weeks' gestation. Plasma glucose time in target (63-140 mg/dL) and time spent hypoglycemic were calculated. RESULTS: Plasma glucose time in target was comparable for closed-loop and conventional CSII (median [interquartile range]: 81 [59-87] vs. 81% [54-90]; P = 0.75). Less time was spent hypoglycemic (<45 mg/dL [0.0 vs. 0.3%]; P = 0.04), with a lower low blood glucose index (2.4 [0.9-3.5] vs. 3.3 [1.9-5.1]; P = 0.03), during closed-loop insulin delivery. CONCLUSIONS: Closed-loop insulin delivery was as effective as conventional CSII, with less time spent in extreme hypoglycemia.This work was funded by a Diabetes UK project grant (BDA 07/003551). H.R.M. was funded by a National Institute for Health Research (NIHR) research fellowship (PDF/08/01/036). The research was conducted with support from the Juvenile Diabetes Research Foundation, Abbott Diabetes Care (FreeStyle Navigator continuous glucose monitors and sensors), the investigator-initiated study program of the Animas Corporation (Animas 2020 insulin pump), the Medical Research Council Center for Obesity and Related Metabolic Diseases, the NIHR Cambridge Biomedical Research Center, and Addenbrooke's Clinical Research Facility (Cambridge, U.K.). No funder had any role in the study design; data collection, analysis, and interpretation; or manuscript preparation

    Day and night closed-loop control in adults with type 1 diabetes: a comparison of two closed-loop algorithms driving continuous subcutaneous insulin infusion versus patient self-management.

    Get PDF
    OBJECTIVE: To compare two validated closed-loop (CL) algorithms versus patient self-control with CSII in terms of glycemic control. RESEARCH DESIGN AND METHODS: This study was a multicenter, randomized, three-way crossover, open-label trial in 48 patients with type 1 diabetes mellitus for at least 6 months, treated with continuous subcutaneous insulin infusion. Blood glucose was controlled for 23 h by the algorithm of the Universities of Pavia and Padova with a Safety Supervision Module developed at the Universities of Virginia and California at Santa Barbara (international artificial pancreas [iAP]), by the algorithm of University of Cambridge (CAM), or by patients themselves in open loop (OL) during three hospital admissions including meals and exercise. The main analysis was on an intention-to-treat basis. Main outcome measures included time spent in target (glucose levels between 3.9 and 8.0 mmol/L or between 3.9 and 10.0 mmol/L after meals). RESULTS: Time spent in the target range was similar in CL and OL: 62.6% for OL, 59.2% for iAP, and 58.3% for CAM. While mean glucose level was significantly lower in OL (7.19, 8.15, and 8.26 mmol/L, respectively) (overall P = 0.001), percentage of time spent in hypoglycemia (<3.9 mmol/L) was almost threefold reduced during CL (6.4%, 2.1%, and 2.0%) (overall P = 0.001) with less time ≤2.8 mmol/L (overall P = 0.038). There were no significant differences in outcomes between algorithms. CONCLUSIONS: Both CAM and iAP algorithms provide safe glycemic control

    Closed-loop insulin delivery for treatment of type 1 diabetes

    Get PDF
    Type 1 diabetes is one of the most common endocrine problems in childhood and adolescence, and remains a serious chronic disorder with increased morbidity and mortality, and reduced quality of life. Technological innovations positively affect the management of type 1 diabetes. Closed-loop insulin delivery (artificial pancreas) is a recent medical innovation, aiming to reduce the risk of hypoglycemia while achieving tight control of glucose. Characterized by real-time glucose-responsive insulin administration, closed-loop systems combine glucose-sensing and insulin-delivery components. In the most viable and researched configuration, a disposable sensor measures interstitial glucose levels, which are fed into a control algorithm controlling delivery of a rapid-acting insulin analog into the subcutaneous tissue by an insulin pump. Research progress builds on an increasing use of insulin pumps and availability of glucose monitors. We review the current status of insulin delivery, focusing on clinical evaluations of closed-loop systems. Future goals are outlined, and benefits and limitations of closed-loop therapy contrasted. The clinical utility of these systems is constrained by inaccuracies in glucose sensing, inter- and intra-patient variability, and delays due to absorption of insulin from the subcutaneous tissue, all of which are being gradually addressed.Supported by the Juvenile Diabetes Research Foundation (#22-2006-1113, #22-2007-1801, #22-2009-801), Diabetes UK (BDA07/0003549, BDA07/0003551), European Commission Framework Programme 7 (247138), NIDDK (DK085621), and NIHR Cambridge Biomedical Research Centre

    Persistent syndrome of inappropriate antidiuretic hormone secretion following traumatic brain injury

    Get PDF
    UNLABELLED: The syndrome of inappropriate antidiuretic hormone secretion (SIADH) can occur following traumatic brain injury (TBI), but is usually transient. There are very few case reports describing chronic SIADH and all resolved within 12 months, except for one case complicated by meningo-encephalitis. Persistent symptomatic hyponatremia due to chronic SIADH was present for 4 years following a TBI in a previously well 32-year-old man. Hyponatremia consistent with SIADH initially occurred in the immediate period following a high-speed motorbike accident in 2010. There were associated complications of post-traumatic amnesia and mild cognitive deficits. Normalization of serum sodium was achieved initially with fluid restriction. However, this was not sustained and he subsequently required a permanent 1.2 l restriction to maintain near normal sodium levels. Multiple episodes of acute symptomatic hyponatremia requiring hospitalization occurred over the following years when he repeatedly stopped the fluid restriction. Given the ongoing nature of his hyponatremia and difficulties complying with strict fluid restriction, demeclocycline was commenced in 2014. Normal sodium levels without fluid restriction have been maintained for 6 months since starting demeclocycline. This case illustrates an important long-term effect of TBI, the challenges of complying with permanent fluid restrictions and the potential role of demeclocycline in patients with chronic hyponatremia due to SIADH. LEARNING POINTS: Hyponatraemia due to SIADH commonly occurs after TBI, but is usually mild and transient.Chronic hyponatraemia due to SIADH following TBI is a rare but important complication.It likely results from damage to the pituitary stalk or posterior pituitary causing inappropriate non-osmotic hypersecretion of ADH.First line management of SIADH is generally fluid restriction, but hypertonic saline may be required in severe cases. Adherence to long-term fluid restriction is challenging. Other options include oral urea, vasopressin receptor antagonists and demeclocycline.While effective, oral urea is poorly tolerated and vasopressin receptor antagonists are currently not licensed for use in Australia or the USA beyond 30 days due to insufficient long-term safety data and specific concerns of hepatotoxicity.Demeclocycline is an effective, well-tolerated and safe option for management of chronic hyponatraemia due to SIADH
    corecore