234 research outputs found

    Evaluating and improving adaptive educational systems with learning curves

    Get PDF
    Personalised environments such as adaptive educational systems can be evaluated and compared using performance curves. Such summative studies are useful for determining whether or not new modifications enhance or degrade performance. Performance curves also have the potential to be utilised in formative studies that can shape adaptive model design at a much finer level of granularity. We describe the use of learning curves for evaluating personalised educational systems and outline some of the potential pitfalls and how they may be overcome. We then describe three studies in which we demonstrate how learning curves can be used to drive changes in the user model. First, we show how using learning curves for subsets of the domain model can yield insight into the appropriateness of the model’s structure. In the second study we use this method to experiment with model granularity. Finally, we use learning curves to analyse a large volume of user data to explore the feasibility of using them as a reliable method for fine-tuning a system’s model. The results of these experiments demonstrate the successful use of performance curves in formative studies of adaptive educational systems

    Component-Based Construction of a Science Learning Space

    Full text link

    Ethics of AI in Education: Towards a Community-Wide Framework

    Get PDF
    While Artificial Intelligence in Education (AIED) research has at its core the desire to support student learning, experience from other AI domains suggest that such ethical intentions are not by themselves sufficient. There is also the need to consider explicitly issues such as fairness, accountability, transparency, bias, autonomy, agency, and inclusion. At a more general level, there is also a need to differentiate between doing ethical things and doing things ethically, to understand and to make pedagogical choices that are ethical, and to account for the ever-present possibility of unintended consequences. However, addressing these and related questions is far from trivial. As a first step towards addressing this critical gap, we invited 60 of the AIED community’s leading researchers to respond to a survey of questions about ethics and the application of AI in educational contexts. In this paper, we first introduce issues around the ethics of AI in education. Next, we summarise the contributions of the 17 respondents, and discuss the complex issues that they raised. Specific outcomes include the recognition that most AIED researchers are not trained to tackle the emerging ethical questions. A well-designed framework for engaging with ethics of AIED that combined a multidisciplinary approach and a set of robust guidelines seems vital in this context

    Five Lenses on Team Tutor Challenges: A Multidisciplinary Approach

    Get PDF
    This chapter describes five disciplinary domains of research or lenses that contribute to the design of a team tutor. We focus on four significant challenges in developing Intelligent Team Tutoring Systems (ITTSs), and explore how the five lenses can offer guidance for these challenges. The four challenges arise in the design of team member interactions, performance metrics and skill development, feedback, and tutor authoring. The five lenses or research domains that we apply to these four challenges are Tutor Engineering, Learning Sciences, Science of Teams, Data Analyst, and Human–Computer Interaction. This matrix of applications from each perspective offers a framework to guide designers in creating ITTSs
    corecore