115 research outputs found

    Modelling of gas dynamical properties of the KATRIN tritium source and implications for the neutrino mass measurement

    Get PDF
    The KATRIN experiment aims to measure the effective mass of the electron antineutrino from the analysis of electron spectra stemming from the beta-decay of molecular tritium with a sensitivity of 200 meV. Therefore, a daily throughput of about 40 g of gaseous tritium is circulated in a windowless source section. An accurate description of the gas flow through this section is of fundamental importance for the neutrino mass measurement as it significantly influences the generation and transport of beta-decay electrons through the experimental setup. In this paper we present a comprehensive model consisting of calculations of rarefied gas flow through the different components of the source section ranging from viscous to free molecular flow. By connecting these simulations with a number of experimentally determined operational parameters the gas model can be refreshed regularly according to the measured operating conditions. In this work, measurement and modelling uncertainties are quantified with regard to their implications for the neutrino mass measurement. We find that the systematic uncertainties related to the description of gas flow are represented by Δmν2=(3.06±0.24)103\Delta m_{\nu}^2=(-3.06\pm 0.24)\cdot10^{-3} eV2^2, and that the gas model is ready to be used in the analysis of upcoming KATRIN data.Comment: 28 pages, 13 figure

    Pseudoxanthoma Elasticum: Genetic Variations in Antioxidant Genes Are Risk Factors for Early Disease Onset

    Full text link

    Measurement of Fibrosis Marker Xylosyltransferase I Activity by HPLC Electrospray Ionization Tandem Mass Spectrometry

    Full text link

    β\beta-Decay Spectrum, Response Function and Statistical Model for Neutrino Mass Measurements with the KATRIN Experiment

    Get PDF
    The objective of the Karlsruhe Tritium Neutrino (KATRIN) experiment is to determine the effective electron neutrino mass m(νe)m(\nu_\text{e}) with an unprecedented sensitivity of 0.2eV0.2\,\text{eV} (90\% C.L.) by precision electron spectroscopy close to the endpoint of the β\beta decay of tritium. We present a consistent theoretical description of the β\beta electron energy spectrum in the endpoint region, an accurate model of the apparatus response function, and the statistical approaches suited to interpret and analyze tritium β\beta decay data observed with KATRIN with the envisaged precision. In addition to providing detailed analytical expressions for all formulae used in the presented model framework with the necessary detail of derivation, we discuss and quantify the impact of theoretical and experimental corrections on the measured m(νe)m(\nu_\text{e}). Finally, we outline the statistical methods for parameter inference and the construction of confidence intervals that are appropriate for a neutrino mass measurement with KATRIN. In this context, we briefly discuss the choice of the β\beta energy analysis interval and the distribution of measuring time within that range.Comment: 27 pages, 22 figures, 2 table

    A randomized controlled trial on the efficacy of carbohydrate-reduced or fat-reduced diets in patients attending a telemedically guided weight loss program

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We investigated whether macronutrient composition of energy-restricted diets influences the efficacy of a telemedically guided weight loss program.</p> <p>Methods</p> <p>Two hundred overweight subjects were randomly assigned to a conventional low-fat diet and a low-carbohydrate diet group (target carbohydrate content: >55% energy and <40% energy, respectively). Both groups attended a weekly nutrition education program and dietary counselling by telephone, and had to transfer actual body weight data to our clinic weekly with added Bluetooth<sup>® </sup>technology by mobile phone. Various fatness and fat distribution parameters, energy and macronutrient intake, and various biochemical risk markers were measured at baseline and after 6, and 12 months.</p> <p>Results</p> <p>In both groups, energy intake decreased by 400 kcal/d compared to baseline values within the first 6 months and slightly increased again within the second 6 months. Macronutrient composition differed significantly between the groups from the beginning to month 12. At study termination, weight loss was 5.8 kg (SD: 6.1 kg) in the low-carbohydrate group and 4.3 kg (SD: 5.1 kg) in the low-fat group (p = 0.065). In the low-carbohydrate group, triglyceride and HDL-cholesterol levels were lower at month 6 and waist circumference and systolic blood pressure were lower at month 12 compared with the low-fat group (P = 0.005–0.037). Other risk markers improved to a similar extent in both groups.</p> <p>Conclusion</p> <p>Despite favourable effects of both diets on weight loss, the carbohydrate-reduced diet was more beneficial with respect to cardiovascular risk factors compared to the fat-reduced diet. Nevertheless, compliance with a weight loss program appears to be even a more important factor for success in prevention and treatment of obesity than the composition of the diet.</p> <p>Trial registration</p> <p>Clinicaltrials.gov as NCT00868387</p

    Serum Xylosyltransferase Activity in Diabetic Patients as a Possible Marker of Reduced Proteoglycan Biosynthesis

    Get PDF
    OBJECTIVE—Proteoglycan metabolism is altered in diabetic patients. The xylosyltransferases (XTs) are the initial and rate-limiting enzymes in the biosynthesis of the glycosaminoglycan chains in proteoglycans. Here, we analyzed whether the changed proteoglycan metabolism leads to altered serum XT levels in diabetic patients

    A reporting and analysis framework for structured evaluation of COVID-19 clinical and imaging data

    Get PDF
    The COVID-19 pandemic has worldwide individual and socioeconomic consequences. Chest computed tomography has been found to support diagnostics and disease monitoring. A standardized approach to generate, collect, analyze, and share clinical and imaging information in the highest quality possible is urgently needed. We developed systematic, computer-assisted and context-guided electronic data capture on the FDA-approved mint LesionTM software platform to enable cloud-based data collection and real-time analysis. The acquisition and annotation include radiological findings and radiomics performed directly on primary imaging data together with information from the patient history and clinical data. As proof of concept, anonymized data of 283 patients with either suspected or confirmed SARS-CoV-2 infection from eight European medical centers were aggregated in data analysis dashboards. Aggregated data were compared to key findings of landmark research literature. This concept has been chosen for use in the national COVID-19 response of the radiological departments of all university hospitals in Germany
    corecore