370 research outputs found
Characterization of Simulated Low Earth Orbit Space Environment Effects on Acid-spun Carbon Nanotube Yarns
The purpose of this study is to quantify the detrimental effects of atomic oxygen and ultraviolet (UV) C radiation on the mechanical properties, electrical conductivity, and piezoresistive effect of acid-spun carbon nanotube (CNT) yarns. Monotonic tensile tests with in-situ electrical resistance measurements were performed on pristine and exposed yarns to determine the effects of the atomic oxygen and UVC exposures on the yarnâs material properties. Both type of exposures were performed under vacuum to simulate space environment conditions. The CNT yarnsâ mechanical properties did not change significantly after being exposed to UV radiation, but were significantly degraded by the atomic oxygen exposure. The electrical conductivity of the yarn was not significantly affected by either exposure. The piezoresistive effect did not significantly change due to atomic oxygen exposure, but was significantly enhanced as a result of the UV exposure. Scanning electron microscopy revealed significant erosion due to atomic oxygen exposure, but the UV exposure did not significantly change the appearance of the yarnâs external surface. Raman spectroscopy showed that both exposure types induced significant structural disorder in the surface level CNTs. Focused ion beam milling of a UVC exposed yarn revealed that the depth of the induced disorder was very shallow
Solutioin of Poisson's Equation in Electrostatic Particle-on-cell Simulation
In electrostatic Particle-in-Cell simulations of the HEMP-DM3a ion thruster the role of different solution strategies for Poisson?s equation was investigated. The direct solution method of LU decomposition is compared to a stationary iterative method, the successive over-relaxation solver. Results and runtime of solvers were compared, and an outlook on further improvements and developments is presented
Influence of Electron Sources on the Near-field Plume in a Multistage Plasma Thruster
n order to obtain a better understanding of the near-field plume of a multistage plasma thruster, the influence of an external electron source is investigated by Particle-In-Cell simulations. The variation of the source position showed a strong influence of the magnetic field configuration on the electron distribution and therefore on the plume plasma. In the second part of this work, higher energetic electrons were injected in order to model collision-induced diffusion in the plume. This broadens the electron distribution, which leads to a more pronounced divergence angle in the angular ion distribution
Particle-in-cell Simulation Concerning Heat-flux Mitigation Using Electromagnetic Fields
The Particle-in-Cell (PIC) method was used to study heat flux mitigation experiments with argon. In the experiment it was shown that a magnetic field allows to reduce the heat flux towards a target. PIC is well-suited for plasma simulation, giving the chance to get a better basic understanding of the underlying physics. The simulation demonstrates the importance of a self-consistent neutral-plasma description to understand the effect of heat flux reduction
The Banking Firm: The Role of Signaling with Collaterals
In this paper we challenge basic results of signaling models. In our banking model each project of a borrower is described by a continuous density of outcomes. Different density functions are classified according to second stochastisch dominance. Combining these features we find that in a banking model collateral is no longer in a position to signal the degree of riskiness of the borrower to the lender. In most cases the equilibrium is a pooling equilibrium
Characterization of Archaeal Community in Contaminated and Uncontaminated Surface Stream Sediments
Archaeal communities from mercury and uranium-contaminated freshwater stream sediments were characterized and compared to archaeal communities present in an uncontaminated stream located in the vicinity of Oak Ridge, TN, USA. The distribution of the Archaea was determined by pyrosequencing analysis of the V4 region of 16S rRNA amplified from 12 streambed surface sediments. Crenarchaeota comprised 76% of the 1,670 archaeal sequences and the remaining 24% were from Euryarchaeota. Phylogenetic analysis further classified the Crenarchaeota as a Freshwater Group, Miscellaneous Crenarchaeota group, Group I3, Rice Cluster VI and IV, Marine Group I and Marine Benthic Group B; and the Euryarchaeota into Methanomicrobiales, Methanosarcinales, Methanobacteriales, Rice Cluster III, Marine Benthic Group D, Deep Sea Hydrothermal Vent Euryarchaeota 1 and Eury 5. All groups were previously described. Both hydrogen- and acetate-dependent methanogens were found in all samples. Most of the groups (with 60% of the sequences) described in this study were not similar to any cultivated isolates, making it difficult to discern their function in the freshwater microbial community. A significant decrease in the number of sequences, as well as in the diversity of archaeal communities was found in the contaminated sites. The Marine Group I, including the ammonia oxidizer Nitrosopumilus maritimus, was the dominant group in both mercury and uranium/nitrate-contaminated sites. The uranium-contaminated site also contained a high concentration of nitrate, thus Marine Group I may play a role in nitrogen cycle
- âŠ