158 research outputs found

    Ruthenium polypyridyl complexes and their modes of interaction with DNA : is there a correlation between these interactions and the antitumor activity of the compounds?

    Get PDF
    Various interaction modes between a group of six ruthenium polypyridyl complexes and DNA have been studied using a number of spectroscopic techniques. Five mononuclear species were selected with formula [Ru(tpy) L1L2](2-n)?, and one closely related dinuclear cation of formula [{Ru(apy)(tpy)}2{l-H2N(CH2)6NH2}]4?. The ligand tpy is 2,20:60,200-terpyridine and the ligand L1 is a bidentate ligand, namely, apy (2,20-azobispyridine), 2-phenylazopyridine, or 2-phenylpyridinylmethylene amine. The ligand L2 is a labile monodentate ligand, being Cl-, H2O, or CH3CN. All six species containing a labile L2 were found to be able to coordinate to the DNA model base 9-ethylguanine by 1H NMR and mass spectrometry. The dinuclear cationic species, which has no positions available for coordination to a DNA base, was studied for comparison purposes. The interactions between a selection of four representative complexes and calf-thymus DNA were studied by circular and linear dichroism. To explore a possible relation between DNA-binding ability and toxicity, all compounds were screened for anticancer activity in a variety of cancer cell lines, showing in some cases an activity which is comparable to that of cisplatin. Comparison of the details of the compound structures, their DNA binding, and their toxicity allows the exploration of structure–activity relationships that might be used to guide optimization of the activity of agents of this class of compounds

    Lipopolysaccharide Renders Transgenic Mice Expressing Human Serum Amyloid P Component Sensitive to Shiga Toxin 2

    Get PDF
    Transgenic C57BL/6 mice expressing human serum amyloid P component (HuSAP) are resistant to Shiga toxin 2 (Stx2) at dosages that are lethal in HuSAP-negative wild-type mice. However, it is well established that Stx2 initiates extra-intestinal complications such as the haemolytic-uremic syndrome despite the presence of HuSAP in human sera. We now demonstrate that co-administering purified Escherichia coli O55 lipopolysaccharide (LPS), at a dosage of 300 ng/g body weight, to HuSAP-transgenic mice increases their susceptibility to the lethal effects of Stx2. The enhanced susceptibility to Stx2 correlated with an increased expression of genes encoding the pro-inflammatory cytokine TNFα and chemokines of the CXC and CC families in the kidneys of LPS-treated mice, 48 hours after the Stx2/LPS challenge. Co-administering the glucocorticoid dexamethasone, but not the LPS neutralizing cationic peptide LL-37, protected LPS-sensitized HuSAP-transgenic mice from lethal doses of Stx2. Dexamethasone protection was specifically associated with decreased expression of the same inflammatory mediators (CXC and CC-type chemokines and TNFα) linked to enhanced susceptibility caused by LPS. The studies reveal further details about the complex cascade of host-related events that are initiated by Stx2 as well as establish a new animal model system in which to investigate strategies for diminishing serious Stx2-mediated complications in humans infected with enterohemorrhagic E. coli strains

    Role of platelet-derived endothelial cell growth factor/thymidine phosphorylase in fluoropyrimidine sensitivity

    Get PDF
    Platelet-derived endothelial cell growth factor (PD-ECGF)/thymidine phosphorylase (TP) catalyses the reversible phosphorolysis of thymidine to thymine and 2-deoxyribose-1-phosphate and is involved in the metabolism of fluoropyrimidines. It can also activate 5'-deoxyfluorouridine (5'DFUR) and possibly 5-fluorouracil (5FU) and Ftorafur (Ft), but inactivates trifluorothymidine (TFT). We studied the contribution of TP activity to the sensitivity for these fluoropyrimidines by modulating its activity and/or expression level in colon and lung cancer cells using a specific inhibitor of TIP (TPI) or by overproduction of TIP via stable transfection of human TP. Expression was analysed using competitive template-RT-PCR (CT-RT-PCR), Western blot and an activity assay. TP activity ranged from nondetectable to 70678 pmol h(-1) 10(-6) cells, in Colo320 and a TP overexpressing clone Colo320TPI, respectively. We found a good correlation between TIP activity and mRNA expression (r = 0.964, P <0.01) in our cell panel. To determine the role of TIP in the sensitivity to 5FU, 5'DFUR, Ft and TFT, cells were cultured with the various fluoropyrimidines with or without TPI and differences in IC50's were established. TPI modified 5'DFUR, increasing the IC50's 2.5- to 1396-fold in WiDR and Colo320TPI, respectively. 5-Fluorouracil could be modified by inhibiting TP but to a lesser extent than 5'DFUR: IC50's increased 1.9- to 14.7-fold for WiDR and Colo320TPI, respectively. There was no effect on TFT or Ft. There appears to be a threshold level of TP activity to influence the 5'DFUR and 5FU sensitivity, which is higher for 5FU. Even high levels of TP overexpression only had a moderate effect on 5FU sensitivity. (C) 2003 Cancer Research UK

    Advances in our understanding of the pathogenesis of glomerular thrombotic microangiopathy

    Get PDF
    Glomerular thrombotic microangiopathy is a hallmark feature of haemolytic uraemic syndrome, the leading cause of acute renal failure in childhood. This paper is a review of the different mechanistic pathways that lead to this histological picture in the kidney. It will focus on atypical HUS and complement dysregulation, but will also highlight some other recent advances in our understanding of this condition, including the potential role of the molecule vascular endothelial growth factor- A (VEGF-A)

    Binding of the human nucleotide excision repair proteins XPA and XPC/HR23B to the 5R-thymine glycol lesion and structure of the cis-(5R,6S) thymine glycol epimer in the 5′-GTgG-3′ sequence: destabilization of two base pairs at the lesion site

    Get PDF
    The 5R thymine glycol (5R-Tg) DNA lesion exists as a mixture of cis-(5R,6S) and trans-(5R,6R) epimers; these modulate base excision repair. We examine the 7:3 cis-(5R,6S):trans-(5R,6R) mixture of epimers paired opposite adenine in the 5′-GTgG-3′ sequence with regard to nucleotide excision repair. Human XPA recognizes the lesion comparably to the C8-dG acetylaminoflourene (AAF) adduct, whereas XPC/HR23B recognition of Tg is superior. 5R-Tg is processed by the Escherichia coli UvrA and UvrABC proteins less efficiently than the C8-dG AAF adduct. For the cis-(5R, 6S) epimer Tg and A are inserted into the helix, remaining in the Watson–Crick alignment. The Tg N3H imine and A N6 amine protons undergo increased solvent exchange. Stacking between Tg and the 3′-neighbor G•C base pair is disrupted. The solvent accessible surface and T2 relaxation of Tg increases. Molecular dynamics calculations predict that the axial conformation of the Tg CH3 group is favored; propeller twisting of the Tg•A pair and hydrogen bonding between Tg OH6 and the N7 atom of the 3′-neighbor guanine alleviate steric clash with the 5′-neighbor base pair. Tg also destabilizes the 5′-neighbor G•C base pair. This may facilitate flipping both base pairs from the helix, enabling XPC/HR23B recognition prior to recruitment of XPA

    Modulation of Neutrophil Function by a Secreted Mucinase of Escherichia coli O157∶H7

    Get PDF
    Escherichia coli O157∶H7 is a human enteric pathogen that causes hemorrhagic colitis which can progress to hemolytic uremic syndrome, a severe kidney disease with immune involvement. During infection, E. coli O157∶H7 secretes StcE, a metalloprotease that promotes the formation of attaching and effacing lesions and inhibits the complement cascade via cleavage of mucin-type glycoproteins. We found that StcE cleaved the mucin-like, immune cell-restricted glycoproteins CD43 and CD45 on the neutrophil surface and altered neutrophil function. Treatment of human neutrophils with StcE led to increased respiratory burst production and increased cell adhesion. StcE-treated neutrophils exhibited an elongated morphology with defective rear detachment and impaired migration, suggesting that removal of the anti-adhesive capability of CD43 by StcE impairs rear release. Use of zebrafish embryos to model neutrophil migration revealed that StcE induced neutrophil retention in the fin after tissue wounding, suggesting that StcE modulates neutrophil-mediated inflammation in vivo. Neutrophils are crucial innate effectors of the antibacterial immune response and can contribute to severe complications caused by infection with E. coli O157∶H7. Our data suggest that the StcE mucinase can play an immunomodulatory role by directly altering neutrophil function during infection. StcE may contribute to inflammation and tissue destruction by mediating inappropriate neutrophil adhesion and activation

    Mechanism of trifluorothymidine potentiation of oxaliplatin-induced cytotoxicity to colorectal cancer cells

    Get PDF
    Oxaliplatin (OHP) is an anticancer agent that acts by formation of Platinum-DNA (Pt-DNA) adducts resulting in DNA-strand breaks and is used for the treatment of colorectal cancer. The pyrimidine analog trifluorothymidine (TFT) forms together with a thymidine phosphorylase inhibitor (TPI) the anticancer drug formulation TAS-102, in which TPI enhances the bioavailability of TFT in vivo. In this in vitro study the combined cytotoxic effects of OHP with TFT were investigated in human colorectal cancer cells as a model for TAS-102 combinations. In a panel of five colon cancer cell lines (WiDr, H630, Colo320, SNU-C4 and SW1116) we evaluated the OHP-TFT drug combinations using the multiple drug–effect analysis with CalcuSyn software, in which the combination index (CI) indicates synergism (CI<0.9), additivity (CI=0.9–1.1) or antagonism (CI>1.1). Drug target analysis was used for WiDr, H630 and SW1116 to investigate whether there was an increase in Pt-DNA adduct formation, DNA damage induction, cell cycle delay and apoptosis. Trifluorothymidine combined with OHP resulted in synergism for all cell lines (all CI<0.9). This was irrespective of schedule in which either one of the drugs was kept at a constant concentration (using variable drug ratio) or when the two drugs were added in a 1 : 1 IC50-based molar ratio. Synergism could be increased for WiDr using sequential drug treatment schedules. Trifluorothymidine increased Pt-DNA adduct formation significantly in H630 and SW1116 (14.4 and 99.1%, respectively; P<0.05). Platinum-DNA adducts were retained best in SW1116 in the presence of TFT. More DNA-strand breaks were induced in SW1116 and the combination increased DNA damage induction (>20%) compared with OHP alone. Exposure to the drugs induced a clear cell-cycle S-phase arrest, but was dose schedule and cell line dependent. Trifluorothymidine (TFT) and OHP both induced apoptosis, which increased significantly for WiDr and SW1116 after TFT–OHP exposure (18.8 and 20.6% respectively; P<0.05). The basal protein levels of ERCC1 DNA repair enzyme were not related to the DNA damage that was induced in the cell lines. In conclusion, the combination of TFT with the DNA synthesis inhibitor OHP induces synergism in colorectal cancer cells, but is dependent on the dose and treatment schedule used

    Cellular pharmacology of multi- and duplex drugsconsisting of ethynylcytidine and 5-fluoro-2′-deoxyuridine

    Get PDF
    Prodrugs can have the advantage over parent drugs in increased activation and cellular uptake. The multidrug ETC-L-FdUrd and the duplex drug ETC-FdUrd are composed of two different monophosphate-nucleosides, 5-fluoro-2′deoxyuridine (FdUrd) and ethynylcytidine (ETC), coupled via a glycerolipid or phosphodiester, respectively. The aim of the study was to determine cytotoxicity levels and mode of drug cleavage. Moreover, we determined whether a liposomal formulation of ETC-L-FdUrd would improve cytotoxic activity and/or cleavage. Drug effects/cleavage were studied with standard radioactivity assays, HPLC and LC-MS/MS in FM3A/0 mammary cancer cells and their FdUrd resistant variants FM3A/TK−. ETC-FdUrd was active (IC50 of 2.2 and 79 nM) in FM3A/0 and TK− cells, respectively. ETC-L-FdUrd was less active (IC50: 7 nM in FM3A/0 vs 4500 nM in FM3A/TK−). Although the liposomal formulation was less active than ETC-L-FdUrd in FM3A/0 cells (IC50:19.3 nM), resistance due to thymidine kinase (TK) deficiency was greatly reduced. The prodrugs inhibited thymidylate synthase (TS) in FM3A/0 cells (80–90%), but to a lower extent in FM3A/TK− (10–50%). FdUMP was hardly detected in FM3A/TK− cells. Inhibition of the transporters and nucleotidases/phosphatases resulted in a reduction of cytotoxicity of ETC-FdUrd, indicating that this drug was cleaved outside the cells to the monophosphates, which was verified by the presence of FdUrd and ETC in the medium. ETC-L-FdUrd and the liposomal formulation were neither affected by transporter nor nucleotidase/phosphatase inhibition, indicating circumvention of active transporters. In vivo, ETC-FdUrd and ETC-L-FdURd were orally active. ETC nucleotides accumulated in both tumor and liver tissues. These formulations seem to be effective when a lipophilic linker is used combined with a liposomal formulation
    corecore