22 research outputs found

    Region-Specific Effects of Immunotherapy With Antibodies Targeting α-synuclein in a Transgenic Model of Synucleinopathy

    Get PDF
    Synucleinopathies represent a group of neurodegenerative disorders which are characterized by intracellular accumulation of aggregated α-synuclein. α-synuclein misfolding and oligomer formation is considered a major pathogenic trigger in these disorders. Therefore, targeting α-synuclein species represents an important candidate therapeutic approach. Our aim was to analyze the biological effects of passive immunization targeting α-synuclein and to identify the possible underlying mechanisms in a transgenic mouse model of oligodendroglial α-synucleinopathy. We used PLP-α-synuclein mice overexpressing human α-synuclein in oligodendrocytes. The animals received either antibodies that recognize α-synuclein or vehicle. Passive immunization mitigated α-synuclein pathology and resulted in reduction of total α-synuclein in the hippocampus, reduction of intracellular accumulation of aggregated α-synuclein, particularly significant in the spinal cord. Lowering of the extracellular oligomeric α-synuclein was associated with reduction of the density of activated iba1-positive microglia profiles. However, a shift toward phagocytic microglia was seen after passive immunization of PLP-α-synuclein mice. Lowering of intracellular α-synuclein was mediated by autophagy degradation triggered after passive immunization in PLP-α-synuclein mice. In summary, the study provides evidence for the biological efficacy of immunotherapy in a transgenic mouse model of oligodendroglial synucleinopathy. The different availability of the therapeutic antibodies and the variable load of α-synuclein pathology in selected brain regions resulted in differential effects of the immunotherapy that allowed us to propose a model of the underlying mechanisms of antibody-aided α-synuclein clearance

    Zur Kenntnis des Plumierids

    No full text

    OntoH2G: A semantic model to represent building infrastructure and occupant interactions

    No full text
    10th International Conference on Sustainability and Energy in Buildings, SEB 2018 -- 24 June 2018 through 26 June 2018 -- 221679In order to reduce the energy gap originated by the difference between existing tools estimations and real energy consumption, HIT2GAP European H2020 project aims at advancing on building control tools by providing a newer decision-making technology. Technically, HIT2GAP offers a platform inspired by previous reference architectures (e.g., Haystack) and complements them through a knowledge-based model, called OntoH2G, to store building information under a common vocabulary and consequently to enable fine-grained vision of the building with its equipment and occupants. OntoH2G advances over existing models on two main aspects: (i) being compliant with well-known ontologies in different domains in order to cover all energy building concepts, and (ii) its ability to represent user/occupant behavior, preferences, and interactions. In this paper, we present the main features of OntoH2G and describe how the well-known ontologies have been aligned in OntoH2G. © Springer Nature Switzerland AG 2019.680708Acknowledgements. The HIT2GAP project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 680708. -

    The molecular tweezer CLR01 reduces aggregated, pathologic, and seeding-competent α-synuclein in experimental multiple system atrophy.

    No full text
    Multiple system atrophy (MSA) is a fatal, adult-onset neurodegenerative disorder that has no cure and very limited treatment options. MSA is characterized by deposition of fibrillar α-synuclein (α-syn) in glial cytoplasmic inclusions in oligodendrocytes. Similar to other synucleinopathies, α-syn self-assembly is thought to be a key pathologic event and a prominent target for disease modification in MSA. Molecular tweezers are broad-spectrum nanochaperones that prevent formation of toxic protein assemblies and enhance their clearance. The current lead compound, CLR01, has been shown to inhibit α-syn aggregation but has not yet been tested in the context of MSA. To fill this gap, here, we conducted a proof-of-concept study to assess the efficacy of CLR01 in remodeling MSA-like α-syn pathology in the PLP-α-syn mouse model of MSA. Six-month-old mice received intracerebroventricular CLR01 (0.3 or 1 mg/kg per day) or vehicle for 32 days. Open-field test revealed a significant, dose-dependent amelioration of an anxiety-like phenotype. Subsequently, immunohistochemical and biochemical analyses showed dose-dependent reduction of pathological and seeding-competent forms of α-syn, which correlated with the behavioral phenotype. CLR01 treatment also promoted dopaminergic neuron survival in the substantia nigra. To our knowledge, this is the first demonstration of an agent that reduces formation of putative high-molecular-weight oligomers and seeding-competent α-syn in a mouse model of MSA, supporting the view that these species are key to the neurodegenerative process and its cell-to-cell progression in MSA. Our study suggests that CLR01 is an attractive therapeutic candidate for disease modification in MSA and related synucleinopathies, supporting further preclinical development

    Image_1_Region-Specific Effects of Immunotherapy With Antibodies Targeting α-synuclein in a Transgenic Model of Synucleinopathy.JPEG

    No full text
    <p>Synucleinopathies represent a group of neurodegenerative disorders which are characterized by intracellular accumulation of aggregated α-synuclein. α-synuclein misfolding and oligomer formation is considered a major pathogenic trigger in these disorders. Therefore, targeting α-synuclein species represents an important candidate therapeutic approach. Our aim was to analyze the biological effects of passive immunization targeting α-synuclein and to identify the possible underlying mechanisms in a transgenic mouse model of oligodendroglial α-synucleinopathy. We used PLP-α-synuclein mice overexpressing human α-synuclein in oligodendrocytes. The animals received either antibodies that recognize α-synuclein or vehicle. Passive immunization mitigated α-synuclein pathology and resulted in reduction of total α-synuclein in the hippocampus, reduction of intracellular accumulation of aggregated α-synuclein, particularly significant in the spinal cord. Lowering of the extracellular oligomeric α-synuclein was associated with reduction of the density of activated iba1-positive microglia profiles. However, a shift toward phagocytic microglia was seen after passive immunization of PLP-α-synuclein mice. Lowering of intracellular α-synuclein was mediated by autophagy degradation triggered after passive immunization in PLP-α-synuclein mice. In summary, the study provides evidence for the biological efficacy of immunotherapy in a transgenic mouse model of oligodendroglial synucleinopathy. The different availability of the therapeutic antibodies and the variable load of α-synuclein pathology in selected brain regions resulted in differential effects of the immunotherapy that allowed us to propose a model of the underlying mechanisms of antibody-aided α-synuclein clearance.</p
    corecore