37 research outputs found

    Discrepancy-based error estimates for Quasi-Monte Carlo. I: General formalism

    Get PDF
    We show how information on the uniformity properties of a point set employed in numerical multidimensional integration can be used to improve the error estimate over the usual Monte Carlo one. We introduce a new measure of (non-)uniformity for point sets, and derive explicit expressions for the various entities that enter in such an improved error estimate. The use of Feynman diagrams provides a transparent and straightforward way to compute this improved error estimate.Comment: 23 pages, uses axodraw.sty, available at ftp://nikhefh.nikhef.nl/pub/form/axodraw Fixed some typos, tidied up section 3.

    Flavour-coherent propagators and Feynman rules: Covariant cQPA formulation

    Full text link
    We present a simplified and generalized derivation of the flavour-coherent propagators and Feynman rules for the fermionic kinetic theory based on coherent quasiparticle approximation (cQPA). The new formulation immediately reveals the composite nature of the cQPA Wightman function as a product of two spectral functions and an effective two-point interaction vertex, which contains all quantum statistical and coherence information. We extend our previous work to the case of nonzero dispersive self-energy, which leads to a broader range of applications. By this scheme, we derive flavoured kinetic equations for local 2-point functions Sk(t,t)S^{}_\mathbf{k}(t,t), which are reminiscent of the equations of motion for the density matrix. We emphasize that in our approach all the interaction terms are derived from first principles of nonequilibrium quantum field theory.Comment: 20 pages, 3 figures. Minor modifications, version published in JHE

    The physical meaning of the de Sitter invariants

    Full text link
    We study the Lie algebras of the covariant representations transforming the matter fields under the de Sitter isometries. We point out that the Casimir operators of these representations can be written in closed forms and we deduce how their eigenvalues depend on the field's rest energy and spin. For the scalar, vector and Dirac fields, which have well-defined field equations, we express these eigenvalues in terms of mass and spin obtaining thus the principal invariants of the theory of free fields on the de Sitter spacetime. We show that in the flat limit we recover the corresponding invariants of the Wigner irreducible representations of the Poincare group.Comment: 22 pages no figure

    Entanglement entropy of black holes

    Get PDF
    The entanglement entropy is a fundamental quantity which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff which regulates the short-distance correlations. The geometrical nature of the entanglement entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in 4 and 6 dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as 't Hooft's brick wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields which non-minimally couple to gravity is emphasized. The holographic description of the entanglement entropy of the black hole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.Comment: 89 pages; an invited review to be published in Living Reviews in Relativit

    A NEW POINT IN LAGRANGE SPECTRUM

    No full text
    corecore