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Abstract
In this work, we consider some power series with algebraic coefficients from a certain
algebraic number field K of degreem and investigate transcendence of the values of
the given series for some Liouville number arguments.

1 Introduction
The theory of transcendental numbers has a long history and was originated back to Li-
ouville in his famous paper [] in which he produced the first explicit examples of tran-
scendental numbers at a time where their existence was not yet known. Later, Cantor []
gave another proof of the existence of transcendental numbers by establishing the denu-
merability of the set of algebraic numbers. It follows from this that almost all real numbers
are transcendental. Further, the theory of transcendental numbers is closely related to the
study of Diophantine approximation. Recent advances in Diophantine approximation can
be found in the excellent surveys of Moshchevitin [] and Waldschimidt [].
Mahler [] introduced a classification of the set of all transcendental numbers into three

disjoint classes, termed S, T and U and this classification has proved to be of consider-
able value in the general development of the subject. The first classification of this kind
was outlined by Maillet in [], and others were described by Perna in [] and Morduchai-
Boltovskoj [] but to Mahler’s classification attaches by for the most interest. Mahler de-
scribed this classification in the following way.
Let P(x) = anxn + · · · + ax + a be a polynomial with integral coefficients. The height

H(P) of P is defined byH(P) =max(|an|, . . . , |a|) and the degree of P is denoted by deg(P).
Given an arbitrary complex number ξ , Mahler puts

ωn(H , ξ ) =min
{∣∣P(ξ )∣∣ : deg(P) ≤ n,H(P) ≤ H ,P(ξ ) �= 

}
,

where n and H are positive integers. Next Mahler puts

ωn(ξ ) = lim
H→∞

– logωn(H , ξ )
logH

and ω(ξ ) = lim
n→∞

ωn(ξ )
n

.

The inequalities  ≤ ωn(ξ ) ≤ ∞ and  ≤ ω(ξ ) ≤ ∞ hold. From ωn+(H , ξ ) ≤ ωn(H , ξ ), we
get ωn+(ξ )≥ ωn(ξ ). If for an index ωn(ξ ) = ∞, the μ(ξ ) is defined as the smallest of them,
otherwise μ(ξ ) = ∞. Thus, μ(ξ ) is uniquely determined. Furthermore, the two quantities
μ(ξ ) and ω(ξ ) are never finite simultaneously, for the finiteness of μ(ξ ) implies that there

© 2013 Karadeniz Gözeri; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by MUCC (Crossref)

https://core.ac.uk/display/192846019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.journalofinequalitiesandapplications.com/content/2013/1/178
mailto:gulkaradeniz@gmail.com
http://creativecommons.org/licenses/by/2.0


Karadeniz Gözeri Journal of Inequalities and Applications 2013, 2013:178 Page 2 of 9
http://www.journalofinequalitiesandapplications.com/content/2013/1/178

is an n < ∞ such that ωn = ∞, whence ω = ∞. Therefore, there are the following four
possibilities for ξ , ξ is called

an A - number if ω(ξ ) = ,μ(ξ ) = ∞,

an S - number if  < ω(ξ ) <∞,μ(ξ ) = ∞,

a T - number if ω(ξ ) = ∞,μ(ξ ) = ∞,

a U - number if ω(ξ ) = ∞,μ(ξ ) < ∞.

In [], Koksma introduced an analogous classification of complex numbers. He divided
the complex numbers into four classes A∗, S∗, T∗ and U∗ in the following way.
Let α be an arbitrary algebraic number. If we denote its minimal defining polynomial by

P(x), then the height H(α) of α is defined by H(α) = H(P) and the degree deg(α) of α is
defined by deg(α) = deg(P). Given an arbitrary complex number ξ and positive integers n,
H , letα be an algebraic numberwith degree atmostn andheight atmostH such that |ξ –α|
takes the smallest positive value; Koksma defines ω∗

n(H , ξ ) by the following equation:

ω∗
n(H , ξ ) =min

{|ξ – α| : α is algebraic,deg(α)≤ n,H(α) ≤ H ,α �= ξ
}
.

Next, Koksma puts

ω∗
n(ξ ) = lim

H→∞
– log(Hω∗

n(H , ξ ))
logH

and ω∗(ξ ) = lim
n→∞

ω∗
n(ξ )
n

.

The inequalities  ≤ ω∗
n(ξ ) ≤ ∞ and  ≤ ω∗(ξ ) ≤ ∞ hold. If for an index ω∗

n(ξ ) = ∞, the
μ∗(ξ ) is defined as the smallest of them, otherwise μ∗(ξ ) = ∞. Thus, μ∗(ξ ) is uniquely
determined. Furthermore, the two quantities μ∗(ξ ) and ω∗(ξ ) are never finite simultane-
ously. Therefore, there are the following four possibilities for ξ , ξ is called:

an A∗ - number if ω∗(ξ ) = ,μ∗(ξ ) = ∞,

an S∗ - number if  < ω∗(ξ ) <∞,μ∗(ξ ) = ∞,

a T∗ - number if ω∗(ξ ) = ∞,μ∗(ξ ) = ∞,

a U∗ - number if ω∗(ξ ) = ∞,μ∗(ξ ) < ∞.

Wirsing [] proved that both classifications are equivalent. Namely, A, S, T and U num-
bers are the same asA∗, S∗,T∗ andU∗ numbers. The classA is precisely the set of algebraic
numbers. ξ is called aU-number of degreem ifμ(ξ ) =m. The set ofU-numbers of degree
m is denoted by Um. It is obvious that for any m ≥ , the Um is a subclass of U and U is
the union of all disjoint sets Um. Leveque [] proved that Um is not empty for anym ≥ .
In [], Oryan considered a class of power series with algebraic coefficients and proved

that under certain conditions these series take values in the subclassUm for algebraic argu-
ments. Later in [], similar relations are investigated for Liouville number arguments, and
it is proved that these series take values in the set of Mahler’sU-numbers. In [], Saradha
andTijdeman considered certain convergent sums and showed that they are either rational
or transcendental. Later in [], Yuan and Li obtained further results for some convergent
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sums. In [], Nyblom employed a variation on the proof used to established Liouville’s
theorem concerning the rational approximation of algebraic numbers, to deduce explicit
growth conditions for a certain series to converge to a transcendental number. Later, Ny-
blom [] derived a sufficiency condition for a series of positive rational terms to converge
to a transcendental number. Further, Duverney [] proved a theorem that gives a crite-
rion for the sums of infinite series to be transcendental. The terms of these series consist
of the rational numbers and converge regularly and very quickly to zero. In [], Hančl
introduced the concept of transcendental sequences and proved a criterion for sequences
to be transcendental. Later, a new concept of a Liouville sequence was introduced in []
by means of the related Liouville series. Some recent results for the transcendence of infi-
nite series can also be found in Borwein and Coons [], Hančl and Rucki [], Hančl and
Štěpnička [], Murty and Weatherby [], Weatherby [].
In the present work, we considered certain power series with algebraic coefficients from

a certain algebraic number field K of degreem and showed that under certain conditions
these series take values belonging to either the algebraic number field K or

⋃m
i=Ui in

Mahler’s classification of the complex numbers for some Liouville number arguments.

2 Preliminaries
In this paper, |x| means the absolute value of x and the least common multiple of
x,x, . . . ,xn is denoted by [x,x, . . . ,xn].

Definition  A real number ξ is called a Liouville number if and only if for every positive
integer n there exists integers pn, qn (qn > ) with

 <
∣∣∣∣ξ –

pn
qn

∣∣∣∣ < 
qnn

.

The set of all Liouville numbers is identical with the U subclass. More information
about Liouville numbers may be found in [–]. Now, in order to prove our main the-
orem we need the following lemmas.

Lemma  [] Let α, . . . ,αk (k ≥ ) be algebraic numbers which belong to an algebraic
number field K of degree m, and let F(y,x, . . . ,xk) be a polynomial with rational inte-
gral coefficients and with degree at least  in y. If η is any algebraic number such that
F(η,α, . . . ,αk) = , then deg(η)≤ dm and

H(η) ≤ dm+(l+···+lk )mHmH(α)lm · · ·H(αk)lkm,

where H is the height of the polynomial F , d is the degree of F in y and li is the degree of F
in xi for i = , . . . ,k.

Lemma  [] Let α be an algebraic number of degree m, and let α() = α, . . . ,α(m) be its
conjugates. Then |α| ≤ H(α), where |α| =max(|α()|, . . . , |α(m)|).

Lemma  [] Let α be an algebraic number of degree m, then H(α) ≤ (|α|)m, where
|α| =max(|α()|, . . . , |α(m)|).

http://www.journalofinequalitiesandapplications.com/content/2013/1/178
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3 Main result
Theorem  Let K be an algebraic number field of degree m, and let

g(x) =
∞∑
n=

αn

en
xn

be a power series such that αn ∈ K are non-zero algebraic numbers and en >  are rational
integers satisfying the following conditions:

lim
n→∞

log en+
log en

= η > , ()

lim
n→∞

log en+
log en

= ∞, ()

lim
n→∞

logH(αn)
log en

= μ < . ()

Further, let ξ be a Liouville number satisfying the following two properties:
. ξ has an approximation with rational numbers pn

qn (qn > ) so that the following
inequality holds for sufficiently large n

∣∣∣∣ξ –
pn
qn

∣∣∣∣ < 
qnsnn

(
lim
n→∞ sn = +∞

)
. ()

. There exist two positive real constants γ and γ with η

η– < γ < γ and

eγ
n ≤ qnn ≤ eγ

n ()

for sufficiently large n.
Then g(ξ ) belongs to either the algebraic number field K or

⋃m
i=Ui.

Proof It follows from () that

log en+ > η log en ()

for sufficiently large n, where η = η–ε and ε is to be chosen as  < ε < η– γ
γ–

. It follows
from () that the sequence {en} is strictly increasing, thus we have

lim
n→∞ en = ∞, ()

lim
n→∞

log en
n

= ∞ and lim
n→∞

log en
n

= ∞. ()

Furthermore, from () we get

en < e

η
n+ ()

for sufficiently large n.

http://www.journalofinequalitiesandapplications.com/content/2013/1/178
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Let En = [e, e, . . . , en]. Then by using () and (), we obtain for sufficiently large n

en ≤ En ≤ e
ε+

η
η–

n , ()

where ε is to be chosen as  < ε < γ – η
η–

. We can easily deduce from () and μ < μ+


that

logH(αn)
log en

<
μ + 


()

for sufficiently large n. Since () holds, there is a natural number N such that

H(αn) < e(
μ+
 )

n ()

for every n >N. On the other hand, we get from Lemma  that

|αn| ≤ H(αn) ()

since αn are algebraic numbers. From here and (), we obtain

|αn| ≤ |αn| ≤ e(
μ+
 )

n ()

for every n >N. Now, we shall define the algebraic numbers

βn =
n∑

γ=

αγ

eγ

(
pn
qn

)γ

for n = , , , . . . . Since βn ∈ K , deg(βn) ≤ m for n = , , , . . . . Let us determine an up-
per bound for the heights of the algebraic numbers βn. By multiplying both sides of this
equality by Enqnn and putting li = En

ei
for i = , , , . . . , we obtain the equality

Enqnnβn =
(
lqnn

)
α +

(
lqn–n pn

)
α + · · · + (

lnpnn
)
αn.

Since ξ is a Liouville number, we can assume that pn �=  for n = , , , . . . . Then we get a
polynomial

G(y,x,x, . . . ,xn) = Enqnny –
n∑

γ=

(
lγ qn–γ

n pγ
n
)
xγ

with rational integral coefficients such that G(βn,α, . . . ,αn) = . Further, this polynomial
is of degree  in each y,x,x, . . . ,xn. Thus, we deduce from Lemma  that

H(βn) ≤ m+(n+)mHmH(α)m · · ·H(αn)m, ()

where H is the height of the polynomial G(y,x,x, . . . ,xn). By using (), we obtain | pnqn |i ≤
kn for i = , , , . . . , where k = |ξ | +  >  is a real constant. From here, we can easily get

H ≤ Enqnnk
n
. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/178
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It follows from () and () that

H(βn) ≤ kmn
 Em

n q
mn
n H(α)m · · ·H(αn)m, ()

where k = k >  is a real constant. Moreover, we get

H(βi)≤
(
|βi|

)m (i = , , , . . .) ()

from Lemma . Then we deduce from () and () that

H(βn) ≤ m
(n+)kmn

 Em
n q

mn
n

(|β| · · · |βn|
)m

. ()

By using (), () and (), we obtain

(|β| · · · |βn|
)m ≤ m

(n+)ke
γm(μ+

 )
n ,

where k =max(, (H(α) · · ·H(αN ))m
 ) ≥  is a real constant. It follows from here, () and

() that

H(βn) ≤ kne
k
n , ()

where k = mkm k>  and k = γm + γm(μ+
 ) + γm >  are real constants.

Now, we consider the following polynomials:

gn(x) =
n∑

ν=

αν

eν

xν

for n = , , . . . . Since gn(x) are continuous and differentiable for all real numbers, at least
one real number cn exists between ξ and pn

qn such that for every n

gn(ξ ) – βn = gn(ξ ) – gn
(
pn
qn

)
=

(
ξ –

pn
qn

)
g ′
n(cn). ()

It is obvious that |cn| ≤max(|ξ |, | pnqn |). Since | pnqn | < |ξ | + , we obtain |cn| ≤ |ξ | +  for suffi-
ciently large n. Furthermore, from here and () and (), we get

∣∣∣∣gn(ξ ) – gn
(
pn
qn

)∣∣∣∣ ≤ 
qnsnn

n∑
ν=

|αν |
eν

ν
(|ξ | + 

)ν– ()

for sufficiently large n.
Define σn =max(|α|, . . . , |αn|). Then we obtain

n∑
ν=

|αν |
eν

ν
(|ξ | + 

)ν– ≤ nσn
(|ξ | + 

)n– ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/178
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for sufficiently large n. It follows from () that σn ≤ e(
+μ
 )

n for sufficiently large n. We get
from here and (), ()

∣∣gn(ξ ) – βn
∣∣ ≤ n(|ξ | + )n–e(

+μ
 )

n

qnsnn
.

By using (), we obtain from here that

∣∣gn(ξ ) – βn
∣∣ ≤ n(|ξ | + )n–

eγsn–( +μ
 )

n

. ()

From () and limn→∞sn = ∞, it is possible to find a sequence {ω′
n} with limn→∞ω′

n = ∞
such that

n(|ξ | + )n–

eγsn–( +μ
 )

n

≤ 
(kne

k
n )ω′

n
. ()

Therefore, we get from (), () and ()

∣∣gn(ξ ) – βn
∣∣ ≤ 

H(βn)ω
′
n

()

for sufficiently large n. Moreover, the following inequality holds:

∣∣g(ξ ) – gn(ξ )
∣∣ ≤

∞∑
i=

|αn+i|
en+i

|ξ |n+i.

We get from here and ()

∣∣g(ξ ) – gn(ξ )
∣∣ ≤ |ξ |n+

e(
–μ
 )

n+

[
 +

(
en+
en+

) –μ
 |ξ | +

(
en+
en+

) –μ
 |ξ | + · · ·

]
.

Thus, we deduce from () that

 <
en+
en+

<


e
(– 

η
)

n+

.

Since () holds, then we obtain limn→∞ en+
en+

= . Similarly, since –μ

 > , we have

(
en+
en++k

) –μ
 |ξ |k <

(



)k

for k = , , , . . . and, therefore,

∣∣g(ξ ) – gn(ξ )
∣∣ ≤ |ξ |n+

e(
–μ
 )

n+

.

http://www.journalofinequalitiesandapplications.com/content/2013/1/178
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On the other hand from (), we get |ξ |n+ ≤ e(
–μ
 )

n+ for sufficiently large n. From here, we
obtain

∣∣g(ξ ) – gn(ξ )
∣∣ ≤ 

e(
–μ
 )

n+

for sufficiently large n. Now if we define rn = log en+
log en , then we have

∣∣g(ξ ) – gn(ξ )
∣∣ ≤ 

ern(
–μ
 )

n

.

Using (), then it follows that there exists a subsequence {rnk } of {rn} such that limk→∞ rnk =
∞. Therefore, we get

∣∣g(ξ ) – gnk (ξ )
∣∣ ≤ 

e
rnk (

–μ
 )

nk

()

for sufficiently large nk . From () and limk→∞rnk = ∞, there exists a suitable sequence {r′nk }
with limk→∞r′nk = ∞ such that



e
rnk (

–μ
 )

nk

≤ 
(kne

k
n )r

′
nk

and, therefore, from () and (), we obtain

∣∣g(ξ ) – gnk (ξ )
∣∣ ≤ 

H(βnk )
r′nk

()

for sufficiently large nk . On the other hand by using (), we deduce that

∣∣gnk (ξ ) – βnk
∣∣ ≤ 

H(βnk )
ω′
nk

()

for sufficiently large nk . Let ωnk =min(r′nk ,ω
′
nk ). It follows from () and () that

∣∣g(ξ ) – βnk
∣∣ ≤ 

H(βnk )
ωnk

,

where limk→∞ωnk = ∞. It follows from here that limk→∞βnk = g(ξ ). Thus, if the sequence
{βnk } is constant, then g(ξ ) is an algebraic number in K . Otherwise g(ξ ) ∈ ⋃m

i=Ui. �

4 Conclusion
In this work, the series with algebraic coefficients are treated and it is shown that under
certain conditions the values of these series are either algebraic numbers or U-numbers
for Liouville number arguments. The similar results can be proved for the power series,
which are defined in the p-adic field Qp and in the field of formal Laurent series.
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