287 research outputs found
Pairbreaking Without Magnetic Impurities in Disordered Superconductors
We study analytically the effects of inhomogeneous pairing interactions in
short coherence length superconductors, using a spatially varying
Bogoliubov-deGennes model. Within the Born approximation, it reproduces all of
the standard Abrikosov-Gor'kov pairbreaking and gaplessness effects, even in
the absence of actual magnetic impurities. For pairing disorder on a single
site, the T-matrix gives rise to bound states within the
BCS gap. Our results are compared with recent scanning tunneling microscopy
measurements on BiSrCaCuO with Zn or Ni impurities.Comment: 4 pages, 2 figures, submitted to PR
Fluctuation Dominated Josephson Tunneling with a Scanning Tunneling Microscope
We demonstrate Josephson tunneling in vacuum tunnel junctions formed between
a superconducting scanning tunneling microscope tip and a Pb film, for junction
resistances in the range 50-300 k. We show that the superconducting
phase dynamics is dominated by thermal fluctuations, and that the Josephson
current appears as a peak centered at small finite voltages. In the presence of
microwave fields (f=15.0 GHz) the peak decreases in magnitude and shifts to
higher voltages with increasing rf power, in agreement with theory.Comment: 4 pages, REVTeX, submitted to PR
Confinement of superconducting fluctuations due to emergent electronic inhomogeneities
The microscopic nature of an insulating state in the vicinity of a
superconducting state, in the presence of disorder, is a hotly debated
question. While the simplest scenario proposes that Coulomb interactions
destroy the Cooper pairs at the transition, leading to localization of single
electrons, an alternate possibility supported by experimental observations
suggests that Cooper pairs instead directly localize. The question of the
homogeneity, granularity, or possibly glassiness of the material on the verge
of this transition is intimately related to this fundamental issue. Here, by
combining macroscopic and nano-scale studies of superconducting ultrathin NbN
films, we reveal nanoscopic electronic inhomogeneities that emerge when the
film thickness is reduced. In addition, while thicker films display a purely
two-dimensional behaviour in the superconducting fluctuations, we demonstrate a
zero-dimensional regime for the thinner samples precisely on the scale of the
inhomogeneities. Such behavior is somehow intermediate between the Fermi and
Bose insulator paradigms and calls for further investigation to understand the
way Cooper pairs continuously evolve from a bound state of fermionic objects
into localized bosonic entities.Comment: 29 pages 9 figure
Spectroscopic evidence for strong correlations between local superconducting gap and local Altshuler-Aronov density-of-states suppression in ultrathin NbN films
Disorder has different profound effects on superconducting thin films. For a
large variety of materials, increasing disorder reduces electronic screening
which enhances electron-electron repulsion. These fermionic effects lead to a
mechanism described by Finkelstein: when disorder combined to electron-electron
interactions increases, there is a global decrease of the superconducting
energy gap and of the critical temperature , the ratio
/ remaining roughly constant. In addition, in most films an
emergent granularity develops with increasing disorder and results in the
formation of inhomogeneous superconducting puddles. These gap inhomogeneities
are usually accompanied by the development of bosonic features: a pseudogap
develops above the critical temperature and the energy gap
starts decoupling from . Thus the mechanism(s) driving the appearance of
these gap inhomogeneities could result from a complicated interplay between
fermionic and bosonic effects. By studying the local electronic properties of a
NbN film with scanning tunneling spectroscopy (STS) we show that the
inhomogeneous spatial distribution of is locally strongly correlated
to a large depletion in the local density of states (LDOS) around the Fermi
level, associated to the Altshuler-Aronov effect induced by strong electronic
interactions. By modelling quantitatively the measured LDOS suppression, we
show that the latter can be interpreted as local variations of the film
resistivity. This local change in resistivity leads to a local variation of
through a local Finkelstein mechanism. Our analysis furnishes a purely
fermionic scenario explaining quantitatively the emergent superconducting
inhomogeneities, while the precise origin of the latter remained unclear up to
now.Comment: 11 pages, 4 figure
Role of hydrogen in giant spin polarization observed on magnetic nanostructures
We demonstrate that the giant spin contrast observed by scanning tunneling microscopy for double-layer Coislands on Pt(111) is caused by adsorbates at the apex of the Cr-coated W tip. The most likely candidate, in ab initio simulations, is hydrogen. Here, the electron charge is highly polarized by the adjacent Cr layers. The hydrogen adsorption site is shown to change from hollow to on top due to the electric field at the tip apex, created by the tunnel voltage
Power spectrum of many impurities in a d-wave superconductor
Recently the structure of the measured local density of states power spectrum
of a small area of the \BSCCO (BSCCO) surface has been interpreted in terms of
peaks at an "octet" of scattering wave vectors determined assuming weak,
noninterfering scattering centers. Using analytical arguments and numerical
solutions of the Bogoliubov-de Gennes equations, we discuss how the
interference between many impurities in a d-wave superconductor alters this
scenario. We propose that the peaks observed in the power spectrum are not the
features identified in the simpler analyses, but rather "background" structures
which disperse along with the octet vectors. We further consider how our
results constrain the form of the actual disorder potential found in this
material.Comment: 5 pages.2 figure
Interlayer tunneling spectroscopy of BiSrCaCuO: a look from inside on the doping phase diagram of high superconductors
A systematic, doping dependent interlayer tunneling spectroscopy of Bi2212
high superconductor is presented. An improved resolution made it possible
to simultaneously trace the superconducting gap (SG) and the normal state
pseudo-gap (PG) in a close vicinity of and to analyze closing of the PG
at . The obtained doping phase diagram exhibits a critical doping point
for appearance of the PG and a characteristic crossing of the SG and the PG
close to the optimal doping. This points towards coexistence of two different
and competing order parameters in Bi2212. Experimental data indicate that the
SG can form a combined (large) gap with the PG at and that the
interlayer tunneling becomes progressively incoherent with decreasing doping.Comment: 5 pages, 5 figure
Quasi-particle interference and superconducting gap in a high-temperature superconductor Ca2-xNaxCuO2Cl2
High-transition-temperature (high-Tc) superconductivity is ubiquitous in the
cuprates containing CuO2 planes but each cuprate has its own character. The
study of the material dependence of the d-wave superconducting gap (SG) should
provide important insights into the mechanism of high-Tc. However, because of
the 'pseudogap' phenomenon, it is often unclear whether the energy gaps
observed by spectroscopic techniques really represent the SG. Here, we report
spectroscopic imaging scanning tunneling microscopy (SI-STM) studies of
nearly-optimally-doped Ca2-xNaxCuO2Cl2 (Na-CCOC) with Tc = 25 ~ 28 K. They
enable us to observe the quasi-particle interference (QPI) effect in this
material, through which unambiguous new information on the SG is obtained. The
analysis of QPI in Na-CCOC reveals that the SG dispersion near the gap node is
almost identical to that of Bi2Sr2CaCu2Oy (Bi2212) at the same doping level,
while Tc of Bi2212 is 3 times higher than that of Na-CCOC. We also find that SG
in Na-CCOC is confined in narrower energy and momentum ranges than Bi2212. This
explains at least in part the remarkable material dependence of TcComment: 13pages, 4fig
Imaging the Two Gaps of the High-TC Superconductor Pb-Bi2Sr2CuO6+x
The nature of the pseudogap state, observed above the superconducting
transition temperature TC in many high temperature superconductors, is the
center of much debate. Recently, this discussion has focused on the number of
energy gaps in these materials. Some experiments indicate a single energy gap,
implying that the pseudogap is a precursor state. Others indicate two,
suggesting that it is a competing or coexisting phase. Here we report on
temperature dependent scanning tunneling spectroscopy of Pb-Bi2Sr2CuO6+x. We
have found a new, narrow, homogeneous gap that vanishes near TC, superimposed
on the typically observed, inhomogeneous, broad gap, which is only weakly
temperature dependent. These results not only support the two gap picture, but
also explain previously troubling differences between scanning tunneling
microscopy and other experimental measurements.Comment: 6 page
- âŠ