637 research outputs found

    Tomography of the red supergiant star {\mu} Cep

    Full text link
    A tomographic method, aiming at probing velocity fields at depth in stellar atmospheres, is applied to the red supergiant star {\mu} Cep and to snapshots of 3D radiative-hydrodynamics simulation in order to constrain atmospheric motions and relate them to photometric variability.Comment: 2 pages, 2 figures, accepted as Proceedings of IAU Symposium No. 343, 201

    Fluorine abundances in planetary nebulae

    Full text link
    We have determined fluorine abundances from the F II 4789 and F IV 4060 nebular emission lines for a sample of planetary nebulae (PNe). Our results show that fluorine is generally overabundant in PNe, thus providing new evidence for the synthesis of fluorine in asymptotic giant branch (AGB) stars. [F/O] is found to be positively correlated with the C/O abundance ratio, in agreement with the predictions of theoretical models of fluorine production in thermally pulsing AGB stars. A large enhancement of fluorine is observed in the Wolf-Rayet PN NGC 40, suggesting that high mass-loss rates probably favor the survival of fluorine.Comment: 4 pages, 3 figures, accepted for publication in ApJ Letter

    Monitoring evolved stars for binarity with the HERMES spectrograph

    Full text link
    Binarity is often invoked to explain peculiarities that can not be explained by the standard theory of stellar evolution. Detecting orbital motion via the Doppler effect is the best method to test binarity when direct imaging is not possible. However, when the orbital period exceeds the duration of a typical observing run, monitoring often becomes problematic. Placing a high-throughput spectrograph on a small semi- robotic telescope allowed us to carry out a radial-velocity survey of various types of peculiar evolved stars. In this review we highlight some findings after the first four years of observations. Thus, we detect eccentric binaries among hot subdwarfs, barium, S stars, and post- AGB stars with disks, which are not predicted by the standard binary interaction theory. In disk objects, in addition, we find signs of the on- going mass transfer to the companion, and an intriguing line splitting, which we attribute to the scattered light of the primary.Comment: To appear in the proceedings of the conference "Setting a new standard in the analysis of binary stars", A. Tkachenko (ed.), European Astron. Soc. Publ. Se

    Fundamental parameters of 16 late-type stars derived from their angular diameter measured with VLTI/AMBER

    Full text link
    Thanks to their large angular dimension and brightness, red giants and supergiants are privileged targets for optical long-baseline interferometers. Sixteen red giants and supergiants have been observed with the VLTI/AMBER facility over a two-years period, at medium spectral resolution (R=1500) in the K band. The limb-darkened angular diameters are derived from fits of stellar atmospheric models on the visibility and the triple product data. The angular diameters do not show any significant temporal variation, except for one target: TX Psc, which shows a variation of 4% using visibility data. For the eight targets previously measured by Long-Baseline Interferometry (LBI) in the same spectral range, the difference between our diameters and the literature values is less than 5%, except for TX Psc, which shows a difference of 11%. For the 8 other targets, the present angular diameters are the first measured from LBI. Angular diameters are then used to determine several fundamental stellar parameters, and to locate these targets in the Hertzsprung-Russell Diagram (HRD). Except for the enigmatic Tc-poor low-mass carbon star W Ori, the location of Tc-rich stars in the HRD matches remarkably well the thermally-pulsating AGB, as it is predicted by the stellar-evolution models. For pulsating stars with periods available, we compute the pulsation constant and locate the stars along the various sequences in the Period -- Luminosity diagram. We confirm the increase in mass along the pulsation sequences, as predicted by the theory, except for W Ori which, despite being less massive, appears to have a longer period than T Cet along the first-overtone sequence.Comment: 15 pages, 9 figures, 6 table

    Element Abundance Determination in Hot Evolved Stars

    Full text link
    The hydrogen-deficiency in extremely hot post-AGB stars of spectral class PG1159 is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse that consumes the hydrogen envelope, exposing the usually-hidden intershell region. Thus, the photospheric element abundances of these stars allow us to draw conclusions about details of nuclear burning and mixing processes in the precursor AGB stars. We compare predicted element abundances to those determined by quantitative spectral analyses performed with advanced non-LTE model atmospheres. A good qualitative and quantitative agreement is found for many species (He, C, N, O, Ne, F, Si, Ar) but discrepancies for others (P, S, Fe) point at shortcomings in stellar evolution models for AGB stars. Almost all of the chemical trace elements in these hot stars can only be identified in the UV spectral range. The Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope played a crucial role for this research.Comment: To appear in: Recent Advances in Spectroscopy: Theoretical, Astrophysical, and Experimental Perspectives, Proceedings, Jan 28 - 31, 2009, Kodaikanal, India (Springer

    193 Influence of nebulized Obracin® versus Tobi® on ciliary beat frequency

    Get PDF

    BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities

    Get PDF
    BindingDB () is a publicly accessible database currently containing ∼20 000 experimentally determined binding affinities of protein–ligand complexes, for 110 protein targets including isoforms and mutational variants, and ∼11 000 small molecule ligands. The data are extracted from the scientific literature, data collection focusing on proteins that are drug-targets or candidate drug-targets and for which structural data are present in the Protein Data Bank. The BindingDB website supports a range of query types, including searches by chemical structure, substructure and similarity; protein sequence; ligand and protein names; affinity ranges and molecular weight. Data sets generated by BindingDB queries can be downloaded in the form of annotated SDfiles for further analysis, or used as the basis for virtual screening of a compound database uploaded by the user. The data in BindingDB are linked both to structural data in the PDB via PDB IDs and chemical and sequence searches, and to the literature in PubMed via PubMed IDs
    • …
    corecore