4,973 research outputs found
Relationship of hypoxia to metastatic ability in rodent tumours
The relationship between tumour oxygenation in vivo and metastatic potential was investigated in 2 rodent tumour models, KHT-C fibrosarcoma and SCC-VII squamous cell carcinoma. The oxygen status in these rodent tumours transplanted intramuscularly in syngeneic mice was measured using the Eppendorf pO 2 Histograph. The results indicate a considerable heterogeneity in oxygenation between individual tumours within each tumour cell line. At different tumour sizes, animals were killed and lung lobes were examined for macroscopic and microscopic lung metastases. In the KHT-C tumours, a significant increase in early pulmonary metastasis formation was observed in mice with hypoxic primary tumours. Hypoxic SCC-VII tumours did not give rise to enhanced lung metastasis formation despite oxygenation in a range similar to the KHT-C tumours. However, the overall metastasis incidence in the SCC-VII model was very low. The results obtained in the KHT-C model, which show that hypoxic tumours are more likely to metastasize, are in agreement with recent clinical data suggesting that a hypoxic environment might be implicated in metastatic ability of human tumours. © 2001 Cancer Research Campaign http://www.bjcancer.co
Breakdown of self-organized criticality
We introduce two sandpile models which show the same behavior of real
sandpiles, that is, an almost self-organized critical behavior for small
systems and the dominance of large avalanches as the system size increases. The
systems become fully self-organized critical, with the critical exponents of
the Bak, Tang and Wiesenfeld model, as the system parameters are changed,
showing that these systems can make a bridge between the well known theoretical
and numerical results and what is observed in real experiments. We find that a
simple mechanism determines the boundary where self-organized can or cannot
exist, which is the presence of local chaos.Comment: 3 pages, 4 figure
Rheology of bidisperse non-Brownian suspensions
We study the rheology of bidisperse non-Brownian suspensions using
particle-based simulation, mapping the viscosity as a function of the size
ratio of the species, their relative abundance, and the overall solid content.
The variation of the viscosity with applied stress exhibits paradigmatic shear
thickening phenomenology irrespective of composition, though the
stress-dependent limiting solids fraction governing the viscosity and its
divergence point are non-monotonic in the mixing ratio. Contact force data
demonstrate an exchange in dominant stress contribution from large-large to
small-small particle contacts as the mixing ratio of the species evolves.
Combining a prior model for shear thickening with one for composition-dependent
jamming, we obtain a full description of the rheology of bidisperse
non-Brownian suspensions capable of predicting effects such as the viscosity
reduction observed upon adding small particle fines to a suspension of large
particles.Comment: 5 pages, 4 figure
Anomalous Transport in Conical Granular Piles
Experiments on 2+1-dimensional piles of elongated particles are performed.
Comparison with previous experiments in 1+1 dimensions shows that the addition
of one extra dimension to the dynamics changes completely the avalanche
properties, appearing a characteristic avalanche size. Nevertheless, the time
single grains need to cross the whole pile varies smoothly between several
orders of magnitude, from a few seconds to more than 100 hours. This behavior
is described by a power-law distribution, signaling the existence of scale
invariance in the transport process.Comment: Accepted in PR
Nearest pattern interaction and global pattern formation
We studied the effect of nearest pattern interaction on a globally pattern
formation in a 2-dimensional space, where patterns are to grow initially from a
noise in the presence of periodic supply of energy. Although our approach is
general, we found that this study is relevant in particular to the pattern
formation on a periodically vibrated granular layer, as it gives a unified
perspective of the experimentally observed pattern dynamics such as oscillon
and stripe formations, skew-varicose and crossroll instabilities, and also a
kink formation and decoration
Smoothing of sandpile surfaces after intermittent and continuous avalanches: three models in search of an experiment
We present and analyse in this paper three models of coupled continuum
equations all united by a common theme: the intuitive notion that sandpile
surfaces are left smoother by the propagation of avalanches across them. Two of
these concern smoothing at the `bare' interface, appropriate to intermittent
avalanche flow, while one of them models smoothing at the effective surface
defined by a cloud of flowing grains across the `bare' interface, which is
appropriate to the regime where avalanches flow continuously across the
sandpile.Comment: 17 pages and 26 figures. Submitted to Physical Review
Knots and Random Walks in Vibrated Granular Chains
We study experimentally statistical properties of the opening times of knots
in vertically vibrated granular chains. Our measurements are in good
qualitative and quantitative agreement with a theoretical model involving three
random walks interacting via hard core exclusion in one spatial dimension. In
particular, the knot survival probability follows a universal scaling function
which is independent of the chain length, with a corresponding diffusive
characteristic time scale. Both the large-exit-time and the small-exit-time
tails of the distribution are suppressed exponentially, and the corresponding
decay coefficients are in excellent agreement with the theoretical values.Comment: 4 pages, 5 figure
4/3-Law of Granular Particles Flowing through a Vertical Pipe
Density waves of granular material (sand) flowing through a vertical pipe
have been investigated. Clear density waves emerge when the cock attached to
bottom end of the pipe is closed. The FFT power spectra were found to show a
stable power-law form The value of the exponent was
evaluated as . We also introduce a simple one-dimensional
model which reproduces from both simulation and theoretical
analysis. (to be published in Phys.Rev.Lett.)Comment: 4 pages, 4 figures, a style fil
SN 2016jhj at redshift 0.34: extending the Type II supernova Hubble diagram using the standard candle method
Although Type Ia supernova cosmology has now reached a mature state, it is important to develop as many independent methods as possible to understand the true nature of dark energy. Recent studies have shown that Type II supernovae (SNe II) offer such a path and could be used as alternative distance indicators. However, the majority of these studies were unable to extend the Hubble diagram above redshift z = 0.3 because of observational limitations. Here, we show that we are now ready to move beyond low redshifts and attempt high-redshift (z ≳ 0.3) SN II cosmology as a result of new-generation deep surveys such as the Subaru/Hyper Suprime-Cam survey. Applying the ´standard candle method´ to SN 2016jhj (z = 0.3398 ± 0.0002; discovered by HSC) together with a low-redshift sample, we are able to construct the highest-redshift SN II Hubble diagram to date with an observed dispersion of 0.27 mag (i.e. 12-13 per cent in distance). This work demonstrates the bright future of SN II cosmology in the coming era of large, wide-field surveys like that of the Large Synoptic Survey Telescope.Fil: de Jaeger, T.. University of California at Berkeley; Estados UnidosFil: Galbany, L.. University of Pittsburgh at Johnstown; Estados UnidosFil: Filippenko, A. V.. University of California at Berkeley; Estados UnidosFil: González Gaitán, S.. Universidad de Chile; ChileFil: Yasuda, N.. University of Tokio; JapónFil: Maeda, K.. University of Tokio; JapónFil: Tanaka, M.. University of Tokio; JapónFil: Morokuma, T.. University of Tokio; JapónFil: Moriya, T. J.. National Astronomical Observatory of Japan; JapónFil: Tominaga, N.. University of Tokyo; JapónFil: Nomoto, Ken’ichi. University of Tokyo; JapónFil: Komiyama, Y.. National Astronomical Observatory of Japan; JapónFil: Anderson, J. P.. European Southern Observatory; ChileFil: Brink, T. G.. University of California at Berkeley; Estados UnidosFil: Carlberg, R. G.. University of Toronto; CanadáFil: Folatelli, Gaston. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. University of Tokyo; JapónFil: Hamuy, M.. Universidad de Chile; ChileFil: Pignata, G.. Universidad Andrés Bello; ChileFil: Zheng, W.. University of California at Berkeley; Estados Unido
Applying the volume averaging theory to open-cell metal foam in natural convection/radiation
Papers presented to the 11th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, South Africa, 20-23 July 2015.Heat sinks made out of open-cell aluminium foam are
investigated numerically in natural convection. Results derived
from a 2D numerical model are compared to results for in-house
experiments. Different foam heights are studied. The numerical
model is based on the volume averaging theory. The aluminium
foam that is used has 10 pores per linear inch and a porosity of
93%. The temperature of the substrate was varied between 55°C
and 95°C. The geometry used in the numerical model replicates
the experimental test rig as well as possible. A discussion of the
determination of the closure terms is given.
If only convective heat transfer is taken into account in the
numerical model, the relative differences between the numerical
and experimental results are smaller than 29% for all foam
heights studied. However, when the influence of radiation is
included in the numerical model, it is shown that the numerical
results differ less than 9% with the experimental ones. This
validates the choice of closure terms used in the model and this
shows that it is necessary to properly model radiative heat
transfer in numerical models of open-cell aluminium foam in
natural convection.am201
- …