235 research outputs found

    Low-complexity regions within protein sequences have position-dependent roles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Regions of protein sequences with biased amino acid composition (so-called Low-Complexity Regions (LCRs)) are abundant in the protein universe. A number of studies have revealed that i) these regions show significant divergence across protein families; ii) the genetic mechanisms from which they arise lends them remarkable degrees of compositional plasticity. They have therefore proved difficult to compare using conventional sequence analysis techniques, and functions remain to be elucidated for most of them. Here we undertake a systematic investigation of LCRs in order to explore their possible functional significance, placed in the particular context of Protein-Protein Interaction (PPI) networks and Gene Ontology (GO)-term analysis.</p> <p>Results</p> <p>In keeping with previous results, we found that LCR-containing proteins tend to have more binding partners across different PPI networks than proteins that have no LCRs. More specifically, our study suggests i) that LCRs are preferentially positioned towards the protein sequence extremities and, in contrast with centrally-located LCRs, such terminal LCRs show a correlation between their lengths and degrees of connectivity, and ii) that centrally-located LCRs are enriched with transcription-related GO terms, while terminal LCRs are enriched with translation and stress response-related terms.</p> <p>Conclusions</p> <p>Our results suggest not only that LCRs may be involved in flexible binding associated with specific functions, but also that their positions within a sequence may be important in determining both their binding properties and their biological roles.</p

    Yeast : the soul of beer’s aroma—a review of flavour-active esters and higher alcohols produced by the brewing yeast

    Get PDF
    Among the most important factors influencing beer quality is the presence of well-adjusted amounts of higher alcohols and esters. Thus, a heavy body of literature focuses on these substances and on the parameters influencing their production by the brewing yeast. Additionally, the complex metabolic pathways involved in their synthesis require special attention. More than a century of data, mainly in genetic and proteomic fields, has built up enough information to describe in detail each step in the pathway for the synthesis of higher alcohols and their esters, but there is still place for more. Higher alcohols are formed either by anabolism or catabolism (Ehrlich pathway) of amino acids. Esters are formed by enzymatic condensation of organic acids and alcohols. The current paper reviews the up-to-date knowledge in the pathways involving the synthesis of higher alcohols and esters by brewing yeasts. Fermentation parameters affecting yeast response during biosynthesis of these aromatic substances are also fully reviewed.Eduardo Pires gratefully acknowledges the Fundacao para a Ciencia e a Tecnologia (FCT, Portugal) for the PhD fellowship support (SFRH/BD/61777/2009). The financial contributions of the EU FP7 project Ecoefficient Biodegradable Composite Advanced Packaging (EcoBioCAP, grant agreement no. 265669) as well as of the Grant Agency of the Czech Republic (project GACR P503/12/1424) are also gratefully acknowledged. The authors thank the Ministry of Education, Youth and Sports of the Czech Republic (MSM 6046137305) for their financial support

    XSTREAM: A practical algorithm for identification and architecture modeling of tandem repeats in protein sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biological sequence repeats arranged in tandem patterns are widespread in DNA and proteins. While many software tools have been designed to detect DNA tandem repeats (TRs), useful algorithms for identifying protein TRs with varied levels of degeneracy are still needed.</p> <p>Results</p> <p>To address limitations of current repeat identification methods, and to provide an efficient and flexible algorithm for the detection and analysis of TRs in protein sequences, we designed and implemented a new computational method called XSTREAM. Running time tests confirm the practicality of XSTREAM for analyses of multi-genome datasets. Each of the key capabilities of XSTREAM (e.g., merging, nesting, long-period detection, and TR architecture modeling) are demonstrated using anecdotal examples, and the utility of XSTREAM for identifying TR proteins was validated using data from a recently published paper.</p> <p>Conclusion</p> <p>We show that XSTREAM is a practical and valuable tool for TR detection in protein and nucleotide sequences at the multi-genome scale, and an effective tool for modeling TR domains with diverse architectures and varied levels of degeneracy. Because of these useful features, XSTREAM has significant potential for the discovery of naturally-evolved modular proteins with applications for engineering novel biostructural and biomimetic materials, and identifying new vaccine and diagnostic targets.</p

    Banana as adjunct in beer production: applicability and performance of fermentative parameters

    Get PDF
    Traditionally, the raw materials for beer production are barley, hops, water, and yeast, but most brewers use also different adjuncts. During the alcoholic fermentation, the contribution of aroma compounds from other ingredients to the final beer flavor depends on the wort composition, on the yeast strain, and mainly on the process conditions. In this context, banana can also be a raw material favorable to alcoholic fermentation being rich in carbohydrates and minerals and providing low acidity. In this work, the objective was to evaluate the performance of wort adjusted with banana juice in different concentrations. For this, static fermentations were conducted at 15 °C at pilot scale (140 L of medium). The addition of banana that changed the concentration of all-malt wort from 10 °P to 12 and 15 °P were evaluated (°P is the weight of the extract or the sugar equivalent in 100 g solution, at 20 °C). The results showed an increase in ethanol production, with approximately 0.4 g/g ethanol yield and 0.6 g/L h volumetric productivity after 84 h of processing when concentrated wort was used. Thus, it was concluded that banana can be used as an adjunct in brewing methods, helping in the development of new products as well as in obtaining concentrated worts.Fundação para a Ciência e a Tecnologia (FCT)EMATER-MGJohnson-DiverseyFapesp (Fundação de Amparo à Pesquisa do Estado de São Paulo/Brasil)Wallerstein Industrial & CommercialNovozymesCAPES (Coordenação para Aperfeiçoamento do Ensino Superior/ Brasil)Malteria do ValeGRICES (Gabinete de Relações Internacionais da Ciência e do Ensino Superior/Portugal

    A bacterially-expressed recombinant envelope protein from Usutu virus induces neutralizing antibodies in rabbits

    Get PDF
    Background: Recently, an emerging flavivirus, Usutu virus (USUV), has caused an epidemic among birds in Europe, resulting in a massive die-off in Eurasian blackbirds. Currently found only in Europe and Africa, it can be envisioned that Usutu virus will follow the path of other flaviviruses, like West Nile virus and Zika virus, and will spread via its mosquito vectors and bird hosts to other parts of the world. Several cases of human infections by Usutu virus have already been published. Anticipating this spread, development of an efficacious vaccine would be highly desirable. Method: This study describes the production in E. coli, purification, and refolding of a partial USUV envelope protein. Prior to immunization, the protein was characterized using size exclusion chromatography, transmission electron microscopy and dynamic light scattering, showing the limited presence of virus-like structures, indicating that the protein solution is probably a mixture of mono and multimeric envelope proteins. Results: Immunizations of two rabbits with the refolded E-protein fraction, mixed with a strong adjuvant, resulted in the generation of neutralizing antibodies, as evidenced in an in vitro assay. Discussion: The way forward towards a subunit vaccine against Usutu virus infection is discussed.Microscopic imaging and technolog

    Simple sequence repeats in Neurospora crassa: distribution, polymorphism and evolutionary inference

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Simple sequence repeats (SSRs) have been successfully used for various genetic and evolutionary studies in eukaryotic systems. The eukaryotic model organism <it>Neurospora crassa </it>is an excellent system to study evolution and biological function of SSRs.</p> <p>Results</p> <p>We identified and characterized 2749 SSRs of 963 SSR types in the genome of <it>N. crassa</it>. The distribution of tri-nucleotide (nt) SSRs, the most common SSRs in <it>N. crassa</it>, was significantly biased in exons. We further characterized the distribution of 19 abundant SSR types (AST), which account for 71% of total SSRs in the <it>N. crassa </it>genome, using a Poisson log-linear model. We also characterized the size variation of SSRs among natural accessions using Polymorphic Index Content (PIC) and ANOVA analyses and found that there are genome-wide, chromosome-dependent and local-specific variations. Using polymorphic SSRs, we have built linkage maps from three line-cross populations.</p> <p>Conclusion</p> <p>Taking our computational, statistical and experimental data together, we conclude that 1) the distributions of the SSRs in the sequenced N. crassa genome differ systematically between chromosomes as well as between SSR types, 2) the size variation of tri-nt SSRs in exons might be an important mechanism in generating functional variation of proteins in <it>N. crassa</it>, 3) there are different levels of evolutionary forces in variation of amino acid repeats, and 4) SSRs are stable molecular markers for genetic studies in <it>N. crassa</it>.</p

    Environmental and Genetic Determinants of Colony Morphology in Yeast

    Get PDF
    Nutrient stresses trigger a variety of developmental switches in the budding yeast Saccharomyces cerevisiae. One of the least understood of such responses is the development of complex colony morphology, characterized by intricate, organized, and strain-specific patterns of colony growth and architecture. The genetic bases of this phenotype and the key environmental signals involved in its induction have heretofore remained poorly understood. By surveying multiple strain backgrounds and a large number of growth conditions, we show that limitation for fermentable carbon sources coupled with a rich nitrogen source is the primary trigger for the colony morphology response in budding yeast. Using knockout mutants and transposon-mediated mutagenesis, we demonstrate that two key signaling networks regulating this response are the filamentous growth MAP kinase cascade and the Ras-cAMP-PKA pathway. We further show synergistic epistasis between Rim15, a kinase involved in integration of nutrient signals, and other genes in these pathways. Ploidy, mating-type, and genotype-by-environment interactions also appear to play a role in the controlling colony morphology. Our study highlights the high degree of network reuse in this model eukaryote; yeast use the same core signaling pathways in multiple contexts to integrate information about environmental and physiological states and generate diverse developmental outputs

    A Catalog of Neutral and Deleterious Polymorphism in Yeast

    Get PDF
    The abundance and identity of functional variation segregating in natural populations is paramount to dissecting the molecular basis of quantitative traits as well as human genetic diseases. Genome sequencing of multiple organisms of the same species provides an efficient means of cataloging rearrangements, insertion, or deletion polymorphisms (InDels) and single-nucleotide polymorphisms (SNPs). While inbreeding depression and heterosis imply that a substantial amount of polymorphism is deleterious, distinguishing deleterious from neutral polymorphism remains a significant challenge. To identify deleterious and neutral DNA sequence variation within Saccharomyces cerevisiae, we sequenced the genome of a vineyard and oak tree strain and compared them to a reference genome. Among these three strains, 6% of the genome is variable, mostly attributable to variation in genome content that results from large InDels. Out of the 88,000 polymorphisms identified, 93% are SNPs and a small but significant fraction can be attributed to recent interspecific introgression and ectopic gene conversion. In comparison to the reference genome, there is substantial evidence for functional variation in gene content and structure that results from large InDels, frame-shifts, and polymorphic start and stop codons. Comparison of polymorphism to divergence reveals scant evidence for positive selection but an abundance of evidence for deleterious SNPs. We estimate that 12% of coding and 7% of noncoding SNPs are deleterious. Based on divergence among 11 yeast species, we identified 1,666 nonsynonymous SNPs that disrupt conserved amino acids and 1,863 noncoding SNPs that disrupt conserved noncoding motifs. The deleterious coding SNPs include those known to affect quantitative traits, and a subset of the deleterious noncoding SNPs occurs in the promoters of genes that show allele-specific expression, implying that some cis-regulatory SNPs are deleterious. Our results show that the genome sequences of both closely and distantly related species provide a means of identifying deleterious polymorphisms that disrupt functionally conserved coding and noncoding sequences
    corecore