1,001 research outputs found

    New Models for X-Ray Synchrotron Radiation from the Remnant of Supernova 1006 AD

    Get PDF
    Galactic cosmic rays up to energies of around 10^15 eV are assumed to originate in supernova remnants (SNRs). The shock wave of a young SNR like SN 1006 AD can accelerate electrons to energies greater than 1 TeV, where they can produce synchrotron radiation in the X-ray band. A new model (SRESC) designed to model synchrotron X-rays from Type Ia supernovae can constrain values for the magnetic-field strength and electron scattering properties, with implications for the acceleration of the unseen ions which dominate the cosmic-ray energetics. New observations by ASCA, ROSAT, and RXTE have provided enormously improved data, which now extend to higher X-ray energies. These data allow much firmer constraints. We will describe model fits to these new data on SN 1006 AD, emphasizing the physical constraints that can be placed on SNRs and on the cosmic-ray acceleration process.Comment: 10 pages, 2 figures. to appear in "Cosmic Explosions", proceeding of the 10th Annual October Astrophysics Conference (ed. S.S. Holt and W. W. Zhang) LaTex aipproc.st

    Exploring the Physics of Type Ia Supernovae Through the X-ray Spectra of their Remnants

    Get PDF
    We present the results of an ongoing project to use the X-ray observations of Type Ia Supernova Remnants to constrain the physical processes involved in Type Ia Supernova explosions. We use the Tycho Supernova Remnant (SN 1572) as a benchmark case, comparing its observed spectrum with models for the X-ray emission from the shocked ejecta generated from different kinds of Type Ia explosions. Both the integrated spectrum of Tycho and the spatial distribution of the Fe and Si emission in the remnant are well reproduced by delayed detonation models with stratified ejecta. All the other Type Ia explosion models fail, including well-mixed deflagrations calculated in three dimensions.Comment: 5 pages, 3 figures, to appear in the proceedings of the "Stellar end products" workshop, 13-15 April 2005, Granada, Spain, ed. M.A. Perez-Torres, Vol. 77 (Jan 2006) of MmSA

    Thermal X-Ray Emission from Shocked Ejecta in Type Ia Supernova Remnants II: Parameters Affecting the Spectrum

    Full text link
    The supernova remnants left behind by Type Ia supernovae provide an excellent opportunity for the study of these enigmatic objects. In a previous work, we showed that it is possible to use the X-ray spectra of young Type Ia supernova remnants to explore the physics of Type Ia supernovae and identify the relevant mechanism underlying these explosions. Our simulation technique is based on hydrodynamic and nonequilibrium ionization calculations of the interaction of a grid of Type Ia explosion models with the surrounding ambient medium, coupled to an X-ray spectral code. In this work we explore the influence of two key parameters on the shape of the X-ray spectrum of the ejecta: the density of the ambient medium around the supernova progenitor and the efficiency of collisionless electron heating at the reverse shock. We also discuss the performance of recent 3D simulations of Type Ia SN explosions in the context of the X-ray spectra of young SNRs. We find a better agreement with the observations for Type Ia supernova models with stratified ejecta than for 3D deflagration models with well mixed ejecta. We conclude that our grid of Type Ia supernova remnant models can improve our understanding of these objects and their relationship to the supernovae that originated them.Comment: Accepted for publication in Ap

    Supernova Ejecta in the Youngest Galactic Supernova Remnant G1.9+0.3

    Get PDF
    G1.9+0.3 is the youngest known Galactic supernova remnant (SNR), with an estimated supernova (SN) explosion date of about 1900, and most likely located near the Galactic Center. Only the outermost ejecta layers with free-expansion velocities larger than about 18,000 km/s have been shocked so far in this dynamically young, likely Type Ia SNR. A long (980 ks) Chandra observation in 2011 allowed spatially-resolved spectroscopy of heavy-element ejecta. We denoised Chandra data with the spatio-spectral method of Krishnamurthy et al., and used a wavelet-based technique to spatially localize thermal emission produced by intermediate-mass elements (IMEs: Si and S) and iron. The spatial distribution of both IMEs and Fe is extremely asymmetric, with the strongest ejecta emission in the northern rim. Fe Kalpha emission is particularly prominent there, and fits with thermal models indicate strongly oversolar Fe abundances. In a localized, outlying region in the northern rim, IMEs are less abundant than Fe, indicating that undiluted Fe-group elements (including 56Ni) with velocities larger than 18,000 km/s were ejected by this SN. But in the inner west rim, we find Si- and S-rich ejecta without any traces of Fe, so high-velocity products of O-burning were also ejected. G1.9+0.3 appears similar to energetic Type Ia SNe such as SN 2010jn where iron-group elements at such high free-expansion velocities have been recently detected. The pronounced asymmetry in the ejecta distribution and abundance inhomogeneities are best explained by a strongly asymmetric SN explosion, similar to those produced in some recent 3D delayed-detonation Type Ia models.Comment: 6 pages, 3 figures, submitted to ApJ Letter

    Nonuniform Expansion of the Youngest Galactic Supernova Remnant G1.9+0.3

    Get PDF
    We report measurements of X-ray expansion of the youngest Galactic supernova remnant, G1.9+0.3, using Chandra observations in 2007, 2009, and 2011. The measured rates strongly deviate from uniform expansion, decreasing radially by about 60% along the X-ray bright SE-NW axis from 0.84% +/- 0.06% per yr to 0.52% +/- 0.03% per yr. This corresponds to undecelerated ages of 120-190 yr, confirming the young age of G1.9+0.3, and implying a significant deceleration of the blast wave. The synchrotron-dominated X-ray emission brightens at a rate of 1.9% +/- 0.4% per yr. We identify bright outer and inner rims with the blast wave and reverse shock, respectively. Sharp density gradients in either ejecta or ambient medium are required to produce the sudden deceleration of the reverse shock or the blast wave implied by the large spread in expansion ages. The blast wave could have been decelerated recently by an encounter with a modest density discontinuity in the ambient medium, such as found at a wind termination shock, requiring strong mass loss in the progenitor. Alternatively, the reverse shock might have encountered an order-of-magnitude density discontinuity within the ejecta, such as found in pulsating delayed-detonation Type Ia models. We demonstrate that the blast wave is much more decelerated than the reverse shock in these models for remnants at ages similar to G1.9+0.3. Similar effects may also be produced by dense shells possibly associated with high-velocity features in Type Ia spectra. Accounting for the asymmetry of G1.9+0.3 will require more realistic 3D Type Ia models.Comment: 6 pages, 4 figures, accepted for publication in ApJ Letters, minor revision
    • …
    corecore