2,468 research outputs found

    Influence of Ross Sea Bottom Water changes on the warming and freshening of the Antarctic Bottom Water in the Australian-Antarctic Basin

    Get PDF
    Changes to the properties of Antarctic Bottom Water in the Australian-Antarctic Basin (AA-AABW) between the 1990s and 2000s are documented using data from the WOCE Hydrographic Program (WHP) and repeated hydrographic surveys. Strong cooling and freshening are observed on isopycnal layers denser than <i>γ<sup>n</sup></i> = 28.30 kg m<sup>−3</sup>. Changes in the average salinity and potential temperature below this isopycnal correspond to a basin-wide warming of 1300 ± 200 GW and freshening of 24 ± 3 Gt year<sup>−1</sup>. Recent changes to dense shelf water in the source regions in the Ross Sea and George V Land can explain the freshening of AA-AABW but not its extensive warming. An alternative mechanism for this warming is a decrease in the supply of AABW from the Ross Sea (RSBW). Hydrographic profiles between the western Ross Sea and George V Land (171–158° E) were analyzed with a simple advective-diffusive model to assess the causes of the observed changes. The model suggests that the warming of RSBW observed between the 1970s and 2000s can be explained by a 21 ± 23% reduction in RSBW transport and the enhancement of the vertical diffusion of heat resulting from a 30 ± 7% weakening of the abyssal stratification. The documented freshening of Ross Sea dense shelf water leads to a reduction in both salinity and density stratification. Therefore the direct freshening of RSBW at its source also produces an indirect warming of the RSBW. A simple box model suggests that the changes in RSBW properties and volume transport (a decrease of 6.7% is assumed between the year 1995 and 2005) can explain 51 ± 6% of the warming and 84 ± 10% of the freshening observed in AA-AABW

    The Fermi Surface Effect on Magnetic Interlayer Coupling

    Full text link
    The oscillating magnetic interlayer coupling of Fe over spacer layers consisting of Cux_{x}Pd1x_{1-x} alloys is investigated by first principles density functional theory. The amplitude, period and phase of the coupling, as well as the disorder-induced decay, are analyzed in detail and the consistency to the Ruderman-Kittel-Kasuya-Yoshida (RKKY) theory is discussed. For the first time an effect of the Fermi surface nesting strength on the amplitude is established from first principles calculations. An unexpected variation of the phase and disorder-induced decay is obtained and the results are discussed in terms of asymptotics

    Surface Acoustic Wave Single-Electron Interferometry

    Full text link
    We propose an experiment to observe interference of a single electron as it is transported along two parallel quasi-one-dimensional channels trapped in a single minimum of a travelling periodic electric field. The experimental device is a modification of the surface acoustic wave (SAW) based quantum processor. Interference is achieved by creating a superposition of spatial wavefunctions between the two channels and inducing a relative phase shift via either a transverse electric field or a magnetic field. The interference can be used to estimate the decoherence time of an electron in this type of solid-state device

    New findings of Antarctic Bottom Water: Ongoing warming/freshening and a discovered AABW source

    Get PDF
    第3回極域科学シンポジウム 横断セッション「海・陸・氷床から探る後期新生代の南極寒冷圏環境変動」11月27日(火) 国立国語研究所 2階講

    Turnip mosaic potyvirus probably first spread to Eurasian brassica crops from wild orchids about 1000 years ago

    Get PDF
    Turnip mosaic potyvirus (TuMV) is probably the most widespread and damaging virus that infects cultivated brassicas worldwide. Previous work has indicated that the virus originated in western Eurasia, with all of its closest relatives being viruses of monocotyledonous plants. Here we report that we have identified a sister lineage of TuMV-like potyviruses (TuMV-OM) from European orchids. The isolates of TuMV-OM form a monophyletic sister lineage to the brassica-infecting TuMVs (TuMV-BIs), and are nested within a clade of monocotyledon-infecting viruses. Extensive host-range tests showed that all of the TuMV-OMs are biologically similar to, but distinct from, TuMV-BIs and do not readily infect brassicas. We conclude that it is more likely that TuMV evolved from a TuMV-OM-like ancestor than the reverse. We did Bayesian coalescent analyses using a combination of novel and published sequence data from four TuMV genes [helper component-proteinase protein (HC-Pro), protein 3(P3), nuclear inclusion b protein (NIb), and coat protein (CP)]. Three genes (HC-Pro, P3, and NIb), but not the CP gene, gave results indicating that the TuMV-BI viruses diverged from TuMV-OMs around 1000 years ago. Only 150 years later, the four lineages of the present global population of TuMV-BIs diverged from one another. These dates are congruent with historical records of the spread of agriculture in Western Europe. From about 1200 years ago, there was a warming of the climate, and agriculture and the human population of the region greatly increased. Farming replaced woodlands, fostering viruses and aphid vectors that could invade the crops, which included several brassica cultivars and weeds. Later, starting 500 years ago, inter-continental maritime trade probably spread the TuMV-BIs to the remainder of the world

    Full auto optical afterglow searching system: MIKOTS

    Get PDF
    Recently, to observe afterglow at various places has appeared necessary. To do so, we have set a fully automated afterglow searching system named MIKOTS. The aperture of our telescope, with a CCD camera, is 300 mm and the focal length is about 1000 mm. The CCD has 512 × 512 pixels size corresponding to a chip size of 10.2 mm ×10.2 mm. The field of view, resolution and lower limit magnitude are 37'.0 × 37'.0, 4".12 × 4".12 and 18.1, respectively. This system can start observation less than 15 seconds after receiving the data from GCN

    Effects of High-Energy Electron Irradiation on Quantum Emitters in Hexagonal Boron Nitride

    Full text link
    © 2018 American Chemical Society. Hexagonal boron nitride (hBN) mono and multilayers are promising hosts for room-temperature single photon emitters (SPEs). In this work we explore high-energy (∼MeV) electron irradiation as a means to generate stable SPEs in hBN. We investigate four types of exfoliated hBN flakes - namely, high-purity multilayers, isotopically pure hBN, carbon-rich hBN multilayers and monolayered material - and find that electron irradiation increases emitter concentrations dramatically in all samples. Furthermore, the engineered emitters are located throughout hBN flakes (not only at flake edges or grain boundaries) and do not require activation by high-temperature annealing of the host material after electron exposure. Our results provide important insights into controlled formation of hBN SPEs and may aid in identification of their crystallographic origin

    Efficient quantum state transfer in spin chains via adiabatic passage

    Get PDF
    We propose a method for quantum state transfer in spin chains using an adiabatic passage technique. Modifying even and odd nearest-neighbour couplings in time allows to achieve transfer fidelities arbitrarily close to one, without the need for a precise control of coupling strengths and timing. We study in detail transfer by adiabatic passage in a spin-1 chain governed by a generalized Heisenberg Hamiltonian. We consider optimization of the transfer process applying optimal control techniques. We discuss a realistic experimental implementation using cold atomic gases confined in deep optical lattices.Comment: 14 pages, 6 figures, to be published in New J. Phy
    corecore